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1. Introduction

y This second semi-annual progress report contains a summary of work accomplished on
\,. O.N.R. contract number N00014-86-K -0370, Delay-Doppler Radar-Imaging, during the period
from 1 December 1986 to 30 May 1987.

=,
-

~—2~ The goal of this project is to formulate and investigate new approaches for forming images

of radar targets from spotlight-mode, delay-doppler measurements. These measurements could

be acquired with a high-resolution radar-imaging system operating with an optical or radio
frequency carrier. Two approaches are under study. The first is motivated by an
image-reconstruction algorithm used in radionuclide imaging called the "confidence-weighted"
algorithm. The second is one based on more fundamental principles which starts with a
mathematical model that accurately describes the physics of an imaging radar-system and then
uses statistical-estimation theory with this model to derive processing algorithms.

Spotlight-mode high-resolution radar-imsaging relies upon the relative motion between the
transmitter, target, and receiver. The target is illuminated by a series of transmitted pulses.

S Rt R

The return for each pulse is a superposition of reflections from various locations on the target,

with each location affecting the pulse by introducing both a delay and a doppler shift. The

returns are processed to produce an image of the target. /4 /
The common approach is to use the same transmitted puise for each illumination of the

target. The returns are processed using a two-dimeasional Fourier transform to produce the

target's image in delay/doppler or range/cross-range coordinates [1,2]. Our goal is to compare

images produced in this standard way with those produced using the alternative approaches we

are developing. :

Bernfeld [3] appears to be the first to introduce the idea for radar imaging of modifying
the pulse shape on successive illuminations of the target. We are using Bernfeld's idea in the
confidence-weighted approach. With this, the FM chirp rate of each pulse is varied so that the

angles made by the ambiguity functions in the delay/doppler plane are caused to vary over the

= YR W A 5= Em

full range of angles between 0° and 180°. Use is then made of the fact that, on the average, the

output of a receiver consisting of filters matched to doppler shifted versions of a transmitted

pulse is the two-dimensional convolution of ambiguity function of the pulse with the scattering

k
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function of the target [4], an output we call the delay/doppler power function. Given the
delay/doppler power functions for each illumination, the target’s ambiguity function can be

determined using the confidence-weighted algorithm [5].

2. Summary of Work Accomplished

During this reporting period, Mr. Robert C. Lewis completed the implementation of

g m e
S L

conventional, two-dimensional Fourier-transform processing for use in comparison studies with

>

the new algorithms we are developing. This work is documented in his M.S. thesis [6], which is
included here in Appendix 4.1. A computer simulation was developed of inverse synthet-
ic-aperture radar processing using a stepped-frequency transmitted waveform. This simulation
was validated by the generation of several images from target scattering functions. A
mathematical model for a slowly fluctuating point target in the presence of additive noise was
applied to simulating the received signal from an extended diffuse rarget. This model was !
implemented in the computer simulation. The effects on conventional radar-images of the
quantitatively specified noise are given. Images of simple radar targets were produced for a
random reflectivity process having varying degrees of coherence time. The results show that
random variations in the reflectivity have a significant effect on the quality of conventional
ISAR images. The target is unrecognizable uniess the reflectivity has a long coherence time
compared to the duration of the radar illumination.

We are currently performing a similsr simulation in which the confidence-weighted
approach is used to produce the images. The results will be presented in the next progress
report. A preliminary observation is that the images produced this way appear to be less
degraded by random temporal varistions in the reflectivity.

The use of the two-dimensional Fourier transform to produce target images is based on a
deterministic model for the radar-reflection data. However, commonly accepted models for
returns from diffuse targets at optical and radio frequencies is not deterministic. We anticipate
that improved target images will be obtained by taking the random nature of the radar return

into account during the processing. For this reason, we have initiated work in formulating the

high-resolution radar-imaging problem as a problem in statistical estimation. Our first results
have been prepared as a report [7], which is included here in Appendix 4.2. This report is

presently being revised for publication in the IEEE Trans. on Information Theory, with the
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main objective in the revision being to reduce the dimensionality of the matrices required to

form the image. The main result of this report is an iterative algorithm for producing target

images.

3. References

1. D. L. Mensa, High Resolution Radar Imaging, Artech House, Dedham, MA, 1981.
2. D. R. Wehner, High Resolution Radar, Artech House, Dedham, MA, 1987.
3. M. Bernfled, "CHIRP Doppler Radar,” Proc. IEEE, Vol. 72, pp. 540-541, April 1984.

4. D. L. Snyder, H. J. Whitehouse, J. T. Wohlischlaeger, and R. C. Lewis, "A New Approach to
Radar/Sonar Imaging," Proc. 1986 SPIE Conference on Advanced Algorithms and Architectures,
Vol. 696, pp. 134-139, 1986.

S. D. L. Sayder, L. J. Thomas, Jr., and M. M. Ter-Pogossian, "A Mathematical Model for
Positron Emission Tomography Systems Having Time-of-Flight Measurements," IEEE Trans. on
Nuclear Science, Vol. NS-28, pp. 3575-3583, June 1981.

6. R. C. Lewis, "Inverse Synthetic-Aperture Radar Imaging,” M.S. Thesis, Sever Institute of
Technology, Washington University, May 1987. See Appendix 4.1.

7. D. L. Snyder, J. A. O'Sullivan, and M. 1. Miller, "“The Use of Maximum-Likelihood
Estimation for Forming Images of Diffuse Radar-Targets from Delay-Doppler Data,” Tech. Rpt.
Electronic Systems and Signals Research Laboratory, Washington University, St. Louis, May
1987. See Appendix 4.2.

~1

o e

£

oA =g

T
K
]
4
)
i
t

i
| &
k




4. Appeadices
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A computer simulation was developed of inverse synthetic-aperture
radar processing using a stepped-frequency transmitted waveform. This
simulation is validated by the generation of several images from target
scattering functions. A mathematical model for a slowly fluctuating
point target in the presence of additive noise is applied to simulating
. the received signal from an extended diffuse target. This model is
- implemented in the computer simulation. The effects on radar images
] of the quantitatively specified noise are presented.
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INVERSE SYNTHETIC-APERTURE RADAR IMAGING
1. INTRODUCTION

Inverse synthetic-aperture radar (ISAR) imaging is a technique for
making two-dimensional delay-doppler images of flying aircraft at long
distances. The resulting image is a spatial distribution of the
reflected signal power from the surface of the target at sufficient
resolution to distinguish features for recognition. These radar images
are often judged similar enough to visual images to enable feature
recognition and target identification.

There are many other applications in which the ISAR imaging
techniques are used. Sensor;'s using other frequencies and signal media
are used; for example, underwater sound (SONAR) is used in submarines to
make images of other ships. Also, the idea of forming an image of an
unknown target for recognition purposes is not the only objective.
Radar images are made in laboratories to resolve the radar cross section
of features on an aircraft or other radar reflector.

This thesis addresses the application of airborne imaging of a
target aircraft. It documents the results of a project during which a
computer program was developed to generate an ISAR image from a speci-

fied target scattering function. The results of this development are

demonstrated by examples of images which were generated. In addition, a
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noise model was developed for radar data and was implemented in the
simulation to provide a quantitative analysis tool useful for observing
the effects of random reflectivity and additive channel noise on radar
images. Resulting images are presented.
1.1 BACKGROUND

The research for this thesis was conducted as a part of a radar
imaging project in the newly formed Electronic Systems and Signals
Research Laboratory of the Electrical Engineering department at
Washington University. It contributes to the laboratory's objective of
developing an ISAR processing capability to be used as an aid in study-
ing the performance of conventional ISAR imaging compared to new imaging
algorithms currently in development, see (1)*. The new algorithms are
based on different approaches to the radar imaging problem, and their
relative performance to ISAR is a major laboratory interest.
1.2 RADAR IMAGING

The signal transmitted by a radar can be designed so that received
echo signals can be measured to yield information about the appearance
of the target. The measurements are usually displayed as a two-dimen-
sional image, like a photograph. A well-known experience which is an
analogy to this operation is using a flashlight in a dark room to

illuminate an object within the light beam. The flashlight is analogous

* The numbers in parentheses in the text indicate references in the

Bibliography.
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to the radar illuminating the target. A radar illuminates a target with
microwave energy instead of light. The eye can resolve the illuminated
surface of an object quite finely so that detailed features are seen.
Likewvise the radar processing must finely resolve the surface of the
illuminated target. An image shows the variation of reflected power
across the surface of the object to the spatial resolution linit. The
radar's target also resides within the beam width of illumination. One
important difference of radar imaging, compared with visual imaging, is
that the target must be rotating.

The radar-signal processing must make use of two received signal
parameters in order to produce an image. The parameters must be
directly related to separate orthogonal components of the two-dimen-
sional position across the object as projected on the image plane. 1In
radar imaging, the received signal parameters used are round-trip delay
and doppler frequency shift. Any point on the surface of the target can
be located in a delay-doppler two-dimensional image plane. To under-
stand this, refer to the geometry of the location of the radar set
relative to the target, as shown in Figure 1.1. A narrow pulse trans-
mitted from the radar and reflected from a point target will be received
after a round-trip delay time. The delay locates the point in
down-range position. A large target is a rigid body rotating about an
axis at its geometric center, and points distributed on its surface are
moving at different velocities, depending on each one's distance from
the axis. For a group of points with the same delay location, contained
in a slice of the target at a down-range position, their cross-range
position corresponds to distance from the axis of rotation, and there-

fore velocity. A target point's velocity causes a doppler frequency

e
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, shift of the reflected radar signal. By measuring doppler frequency, a
point target can thus be located in cross-range by using doppler. The
delay-doppler plane indicated in Figure 1.1 corresponds directly to the

g x-y position plane shown.

Rotation Axlis

Spherical
- Target
RADAR
é 3 ..... »
Doppler
Slice
Delay \
Slice D..G‘T:::P'" |
; _

- j
\s_ Z:—- : \- /
* X

Reesolution Cell —

Figure 1.1 ISAR Imaging Geometry

1.3 ISAR IMAGING )

The relative rotation between the radar and the target may come
from either the radar being fixed while the target rotates, or equi-
valently, the radar rotates about the fixed target. The latter situ-
ation is used in synthetic aperture radar (SAR) imaging where a ground

map is made as an aircraft flies by. The descriptive term 'synthetic

aperturs”" refers to the equivalent antenna aperture derived from
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integrating received signals over a long flight pgth. A longer antenna
results in finer resolution of the target, thus a long flight path while
imaging is desirable. Ground mapping by SAR techniques preceded the use
of ISAR, or inverse SAR, for aircraft-to-aircraft imaging. The descrip-
tion "inverse" refers to using a fixed radar and a rotating target,
which is close to the actual situation in air-to-air imaging uﬁ;n using
the radar's aircraft as a position reference. The computer processing
used in the above two cases of imaging are nearly the same.

The ISAR imaging geometry is shown in Figure 1.1. The axis of
rotation is normal to the line between the radar and the center of the
target{ The resulting image shows the point of view of looking along
the axis of rotation, with illumination coming from the side.

A large target's body rotation axis may have arbitrary angle of
intersection with the radar line of sight. As described by Wehner
in(3), in this case the "effective rotation axis" is coplanar with the
radar line of sight and the true rotation axis and perpendicular to the
radar line of sight. The effective rotation vector has magnitude of the

vector projection of the true rotation vector. Also, the delay-doppler

image plane is normal to the effective rotation axis.
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2. ISAR TECHNIQUES AND WAVEFORMS

This chapter contains a description of two implementations of ISAR
processing. They differ in the waveforms transmitted. The first uses a
linear-FM pulse waveform. The second uses a stepped-frequancy
pulse-burst waveform. The second waveform is a discretization of the
linear-MM pulse waveform. It is best described in comparison to the
linear-FM pulse, and so both techniques are described below to allow a
better overall view of ISAR techniques.

2.1 LINEAR-PM ISAR IMAGING

The technique of using a linear-FM pulse waveform for ISAR imaging
is described in (2). A series of pulses is transmitted to produce an
image. ERach pulse has a rectangular envelope and linear swept frequency
during the pulse. The instantaneous frequancy of a linear-MM pulse is

illustrated in Figure 2.1.

Frequency (GHD

Swept-frequency
Bandwidth
" Tima

[
=~

-l
s ~=

The Instentanecus FPrequency of a Linear-FM Pulse

Pigure 2.1
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The received signal is processed in the following way. It is mixed
with the transmitted signal and sampled, to produce a discrete time
signal which when Fourier transformed will yield the range profile of
the target. An illustration of the radar system components along with a
comparison of the transmitted and received signals for a point targst
and the mixer output is shown in Figure 2.2. The mixer output signal is
sampled and the discrete Fourier transform (DFT) is calculated to get a
sequence of complex numbers. The magnitude values of this complex number
sequence would be the target range profile, but in getting an ISAR image
several linear-FM pulses are transmitted and received, mixed, sampled
and transformed. The complex range profiles resulting from each pulse
are aligned in rows of a two-dimensional arrav so the columns represent
a range bin, the same range value. This two-dimensional array corres-
ponds to the image plane shown in Figure 1.1 such that the rows, each
containing a mixer output sequence resulting from a pulse, are aligned

parallel to the y-axis. The columns are parallel to the x-axis.

Trangmit Antenns

— Point Taget

'% ® Time

Figure 2.2. The Linear-FM imeging Systoms and Wavelerme
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The DFT of each column in the array is then calculated. This sorts the
doppler frequencies of the data in the range bins yielding cross-range
profiles when the magnitudes of the resulting complex numbers are
calculated. After this second step, the array co.:ains an image which
shows the distribution of reflected energy over the surface of the
target. .
2.2 STEPPED-FREQUENCY ISAR IMAGING

This variation on ISAR techniques, from (3), may be described as
using a discretized version of the linear-FM pulse waveform. The
stepped-frequency waveform consists of a sequence of narrow pulses, with
rectangular envelopes, comprising a burst of pulses. This burst of

pulses is illustrated in Figure 2.3.

J
v

Envelope

NN
"

Puise Numb ! 2 Time N

g
—-y

= " Savot -
Fregquency p—T’ —t Frequency

P—Y'—- l

“ 4 h
£ [4
) b g

Puise Number 1 H Time N

Figure 2.3. The Siepped-Froquency Puise Buret
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. Each succeeding pulse in the burst is stepped in frequency. The
g separation between pulses is large enough for the transmitted pulse to

travel to the target and the echoed pulse to return to the receiver

l before the next pulse is transmitted. This is illustrated in Figure
2.4, showing the relative delay of an echo from a point target co;npaud
ﬂ to the time interval between transmitted pulses. The interpulse spacing
is referred to as time T2' The duration of the burst, referred to as
' g time T3, is the same length as a linear-FM pulse, yielding the same
H doppler resolution. This comparison is based on the formula for
, cross-range resolution, from (3),
¢ 7 R WY W W
. 4sin(6/2) ~ 28 ~ 2w NT,
& For a linear-FM pulse waveform, ) is the wavelength of the center

frequency, whereas for a stepped-frequency pulse-burst, 2 is the

wavelength of the lowest frequency ins the burst. The total angle

E

rotated by the target is 6, and target angular velocity is w .
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Linear - FM Puise
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- Narrow
B T - Puises
| - ' -l
| Ty 1
Time

Figure 2.5. Comparison of Puiee Burst With Lineer-FiM Pules

In Figure 2.5, the stepped-frequency burst of pulses is compared to the
linear-FM pulse, showing the same swept-frequency bandwidth transmitted
during the respective waveforms. This bandwidth is the same for each,
to yield equal delay resolution. The equation for delay resolution is

as follows, from (3),

[
Ay = EE ’

where B, also used in Figure 2.5, is the swept-frequency bandwidth of
the linear-FM pulse and the stepped-frequency burst and € is the speed

of light. It is seen that the stepped-frequency burst is a discretized

version of the linear-FM pulse. Each pulse in the stepped-frequency
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Figure 2.6

waveform has duration Tl’ chosen to correspond to the two-way travel
time of a signal across the field of view of the image along the delay
dimension. This arrangement enables the following situation, as illu-
strated in Figure 2.6. The reflected pulse arriving at the receiver can
be considered to be composed of component pulses reflected by resolution
cells distributed in delay. By measuring the mixed received signal at
the instant of time T1/2 seconds after the round-trip delay to the
center of the image area, illustrated as 1 in Figure 2.6, the mixer
output, a complex quantity, will be the sum of received signal com-
ponents from each resolution cell in the target. A measurement of the
complex signal is made in this fashion for each return pulse, after
mixing with the transmitted pulse, resulting in a sequence of complex

numbers for each burst of pulses.
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Several bursts are transmitted to produce an image. The sequence of
received measurements for each burst can be placed in rows of a two
dimensional array in the same way as linear-FM processing. The rows
represent the spectrum of a range profile of the target and, when the
inverse Fourier transform is computed, result in the complex range
profile. To generate an image, the forward Fourier transform n;agnitude
of each column is computed, as it was for the line‘ar-m technique, to
sort doppler frequency components into a cross-range profile. The result
is a two dimensional image.

There are several advantages to using the stepped-frequency tech-
nique to make ISAR images. Since a narrow pulse of constant frequency
is the basic unit of the waveform, with each of these separated by a
relatively long time interval, the wide instantaneous bandwidth and high
sampling rate requirements of transmit and receive equipment is removed
conpéred to what is necessary for the linear-FM technique. The
stepped-frequency ISAR technique is far simpler to implement for this
reason. |
2.3 ANGULAR DOPPLER PROCESSING

As described by Mensa (2), in the stepped-frequency waveform and
linear-FM waveform, and associated imaging techniques, there can be seen
a duality of time and angle of the target during signal transmission.
The target rotates continuously and there is a one-to-one correspondence
between time and angular position. Therefore, the Fourier transforms,
vhich were before seen as operations on temporal signals, can also be
viewed as transforms of spatial signals.

Making use of this concept means that the stepped-frequency ISAR

approach can be used in a laboratory setting to make two dimensional

’ DEOSOr DN OAOSOAOHOA0R000N0
¥ ‘;. ‘,.‘I‘.. sq.t‘;,;_.tgbl_s‘_‘q,l?n"wi‘.‘l!q;l!g;,0:‘503'*030“ L



_13-

radar images without having to rotate the target continuously. The
target's angular position is merely incremented without regard to time.
Also, it is not necessary to use narrow pulses at all, but merely to
reflect a continuous wave signal of specified frequency off the target
and measure the mixer output from the received continuous wave signal.
Continuous wave transmission and reception equipment is simpler-than the
equipment necessary for pulsed operation and means that a 1aborator§
implementation is relatively easy to construct. Laboratories use this
angular doppler technique to two-dimensionally map, with high

resolution, the radar cross-section of targets.
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', 3. ALGORITHM IMPLEMENTATION

¢ A computer program was developed which implements stepped-frequency
s ISAR imaging. This was implemented as a simulation of radar imaging, so
targets were specified and their scattering functions were determined
WY analytically. The computer program uses the scattering function to
calculate the mixed received signal from the target. The ISAR process-

ing part of the simulation uses the received signals to generate an

LA 2
e J
% r [ S v R -

image. This simulation was implemented in the facilities of the

"
E Electronic Systems and Signals Research Laboratory at Washington
ey University. The radar images obtained were displayed on a color
)

i graphics display. To accomplish this, it was necessary to study the
;’ mathematical model of ISAR processing. This model is presented in this
e chapter. Also described are computer algorithms which implement the
N

:; radar imaging simulation. Finally, the results of the radar imaging
:; simulation are presented by examples of images which were generated.

" 3.1 DISTRIBUTED TARGET MODEL

‘: The objective is a high resolution image of the radar target. The
fa target is distributed over many resolution cells. When the entire
'$ target is illuminated by the radar, the target is within the antenna
f§ beam width, and the back-reflected signal is considered to consist of
{: the superposition of the returns from the multitude of resolution cells.
oy, Each resolution cell appears as a point scatterer. Thus, the target can

be viewed equivalently as an array of point scatterers which produces
) the same radar return as the actual target. For the disk and spherical

targets, the resolution cells are located on the surface as shown in

1
2m A = AR IR ET LY TR = OO L T T AT }i
B O O N D N AR e -a. ' . MM 2
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Figure 3.1 where one such resolution cell is located as an intersection
in delay and doppler. In the front view of the target shown in Figure

3.1, the radar illuminates the target from a position perpendicular to

55 e &R =Em

the plane of the paper.
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::: In fact, for the spherical target, there are two area elements on the
» E

)
,::: Y surface with the same delay-doppler coordinates. This is an ambiguity
;:é, s resulting from the geometry of the situation and the properties of high
o I

::':' resolution radar. The radar resolves the three dimensional target
;.‘l [

:.: g surface in only two dimensions, delay and doppler. The total reflection
< of the resolution cell is the sum of the reflection of the two area

112

elements.
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Figure 3.2. The Delay-Doppler Plane

The two area elements of the resolution cell are equivalently mapped
onto the delay-doppler plane shown on Figure 3.2. Point scatterers on
the delay-doppler plane can represent the resolution cells mapped onto
it. The reflectivity of a point equals the vector sum of reflectivity
within the resolution cell, as described in (3).

The two-dimensional planar array of points of reflectivity squared
magnitude is called the scattering function of the target. The signal
vhich would be received from an illumination of the point scatterers in
the scattering function is equivalent to the back scattered signal from
the actual target. However, the following assumptions are imposed on the
reflectivity of the points during ISAR imaging, as described in (4). It
is assumed the reflectivity does not change over the bandwidth of
illuminating signals. Also, it is assumed the reflectivity does not
change as target aspect changes with rotation during the sequence of

pulses necessary for an image.

)
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3.2 STEPPED-FREQUENCY ISAR PROCESSING MODEL

At the instant of mixer output measurement specified as Tb in
Figure 2.6, the received signal is comprised of the superposition of
components echoed from the point scatterers in the target. The super-

position occurs over the delay-doppler plane as follows. The whole

received signal,

g;(t) = I 5 (t),
u,v r

where u is the delav location, v is the doppler location, and t is the

time.

The received signal component due to a resolution cell reflection is,
(1) = b sp(t-1),

where 1 is the travel time delay, and b is reflectivity at the

delay-doppler coordinate. This received signal is a reflection of

the transmitted signal,

ZT(t) = F(t) & vait.

wiere i is the pulse number, fj is the frequency of the pulse, and

?(t) is the complex envelope of the transmitted pulse. Assume ?(t) =
1.0 within the pulse.

For the discussion in this section, the reflectivity is assumed to
be a real number and a deterministic value equal to the square root of
>(u,v), rteflected power in the resolution cell at the delav-doppler
coordinate (u,v). The quantity A(u,v) is also called the scattering
function. In this section, the processing is shown to map correctly the
delay-doppler reflected power, a non-randomly fluctuating quantitv.

This will verify the proper operation of the processing.




If ISAR processing works correctly, it reconstructs from the
received signals the scattering function which produced them. Becau.e
of the linear superposition property of the Fourier transform, the
imaging of the entire scattering function is the sum of the imaging of
single point scatterers. Therefore, consider s single point scatterer
and the received signal from a pulse reflected from it,

vai(t-t)

:1(t) = b oj , b is real.

; This signal is a complex quantity consisting of real and imaginary,
N alternatively in-phase and quadrature, components. To get an ISAR image

of the single point, the first step is the mixing of the received signal

with the transmitted signal. This is accomplished by the system shown

.
v o -

)

in Figure 3.3.
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The mixer output is derived as follows. At the instant of measure-

ment the mixer output signal,

mi(t) = 2-LP[Re(§;(t))-Re(37(t))] + j 2-LP[Im(5;(t))-Im(§(t))],

where LP means a low-pass filter, gi is the received signal,

§T is the transmitted signal, and 6’- §& shifted 90° = j §T-

In the first term,

Re[gi(t)]'Re[g&(t)] = b cos wai(t-f)'cos 2vf ¢
where Re[ ] means the real part is taken. Since

cos(at) -cos(bt) = %[coa(a+b)t + cos (a-b)t],
it follows that

22 B &N &R M R GR O e

Ro[;i(t)]°Re[§;(t)] - %[cos wai(Zt-t) + cos Zlfitl.

¢ Similarly, since sin (at) .cos (bt) = % [sin(a+b)t + sin(a-b)t],.

in the imaginary term of the mixer output signal,

In[;i(t)]-Imlai(t)] = b sin wai(t-r)-(-cos 2wfit),

- % [-sin wai(Zt-r) - sin Zﬂfi('T)],

= g [-sin wai(Zt-t) + sin wair],

where Im{ ] means the imaginary part is taken. After low-pass
filtering, the real component of the mixer output signal is given by

2'LP[Re(:i(t))'Re(ai(t))] = b cos 2wfir.

TE SR ORI S5 ™ =N e

G Also, after low-pass filtering, the imaginary component of the mixer

output signal is given by

R § 2-LP[Ia(3 (£))-In(J,(£))] = § b sin 2nf t.
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Therefore, the total mixer output signal is given by

;i(t) = b cos Zﬂfit +j b sin 2nf 1,

or,
) wait

i(r) =be

For a single point target of arbitrary location in the delay-
doppler field of view, the round-trip delay t is given by

v = w(t) = 3y p),

where vr is relative velocity of the point target, and r is initial
range to target.

X There are a fixed number of pulses in a burst, yielding a sequence
of mixer output values. Time within the burst is incremented as

follows:

t=4iT, + T1/2 + kT

2 3

LR S

where k is Burst index, T] is pulse width, and i is the pulse index.

Using this equation for time in the above equation for round-trip delay,

T may be expressed as

2
1= c(r - vr(i Tz + Tllz + k T3)).

X The expression for the mixer output signal then becomes,

B Las N2 S Bk SR GG BOE EnE A el B R X B

B, = bexply 208, 3r - v (4T, + T /2 + & T,

2

L »
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wvhere exp [ ] means an exponential function.
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The sequence of mixer outputs from a burst is inverse Fourier

transformed to get a range profile RP(n) of the target,

" p Nl 328 q
RP(n) = IDFT[ni] “5 I me N ’
1=0

where N is the number of pulses, n is the range profile index, IDFT

means an inverse discrete Fourier transform is computed. Substituting

the expression for the mixer output signal in this range profile

equation, it is seen that

N-1 .,
RP(n) = 2y exp(j 2nf 2 (r-v(i T, + T./2 + k T.))]explj = i n],
N 2o ic 2t h 3 N
or after rearranging terms,
p N! 21 2
RP(n) = N 120 expl(j N (in+ Nf. E(t-vr(i T, + Tllz + X T3)))}.

The frequency of any pulse is expressed as, fi = fo + i Af, where fo

equals initial frequency used in the burst and Af is the frequency step

of the succeeding pulses. It follows that

N-1 2m 2N
I explj N (in+ ;—(fo + iaf) (r - Vr(i T
i=0

RP(n) = b

2 +T/2 + kTN

2

By using Naf = B, and %& = %;, the above expression for the range

profile is simplified. Also, the following restriction on point target

motion is imposed,

’vr(iT2+Tl/2 + kT3)|<Ar,
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where Ar is range resolution. This restriction implies that the point

does not move out of its resolution cell during rotation. This results

in the following expression for the range profile,

RP( b N-1 . 2% ir 2r
n) = N T explj N (i n+ v i Nf, ;—)]- (3.1)
i=(Q

Since .- n , and 2 = v. , it follows that
Ar o c k

N-1
RP(n) = s ej 2wfork T e
j=0

J %1 i(n-n) (3.2)

where Tk is a delay time associated with a particular burst. The

resulting range profile is then from (3),

j 2nf sin w(n-ng)

RP(n) = b e k

sin g(n-no)

The range profile sequence has a function narrow '"impulse-like"
term which has peak response within the down-range resolution cell where
the point target is located, low-level sidelobes next to the peak and
essentially zero response in other positions. Each burst has a range
profile described by the above equation, containing a phase term which
is a function of burst number and target velocity. In the following,
the above equation is simplified by replacing the narrow "impulse-like"
function term with an ideal impulse which is unity within the down-range
resolution cell of the point target and zero in other positions, thus
ignoring the low-level sidelobes of the above response.

In this manner, the above equation is expressed as,

RP(n) = b ed 2"fo Tk

§(n-ny) (3.3)
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In the next step of ISAR processing, the point target is located in
cross-range position by taking the discrete Fourier transform (DFT) of
the sequence of range profile values of constant range,

N-1 27
DFT [RP(n )) = I b explj 2vf 7, ] exp[-j 5= km].
) k=0 ok N

This is described as a cross-range profile,

N-1
CRP(m) = b I expl j I (mk - Nf T )],
k=0

vwhere m is the doppler index of the sequence and W % (r-Vr k T3).

Using this expression for burst delay time in the cross-range profile

results in

N-1

CRP(m) = b I expl-) &% (km - Nfg 2 + kT3 £ VoNEQ)).
k=0
By separating out the constant phase term, 1 = %5 » and inserting

4'0

fo = =, the cross-range profile becomes,

A

N-1
AL 2
CRP(m) = b kio expl-j N k(m + NT, § Vr)] expl j waor].
Since V. = m Ax w ,
r [o} r
N-1 2n NT32
CRP(m) = b exp[j 27f <] I exp[-j =+ k(m - m Ax w_)].
o k=0 N A o r
. A
Using 4x = %e  NT ’
““r 773
L, N1 2 - ; sin v (n-ng)
CRP(m) = b &) 27T 1 eI N Kmm) ) 2nf T [————=]
k=0 sin N (n-ng)
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By retaining only the peak impulse response and ignoring low-level

sidelobes,

j 2nf

CRP(n) = b e o G(m-mo).

The magnitude of the cross-range profiles forms the image. When simpli-
flying the expression by ignoring side-lobes and using only the ideal

impulse peak response, the profile magnitudes form an image,

|CRP(m)| = Image (n,m) = b §(n-ngy, m-mg).

This is the final result of ISAR processing. It is seen that the

point target shows up in the image at delay-doppler coordinate (no, mo)

as a point with magnitude equal the square root of the scattering
function, as it is supposed to.

For some parameter choices, the total angle of target rotation
during the image frame time is more than a few degrees. In this case,
the point target described above will migrate out of its resolution cell
during the image frame time, invalidating the assumption used in getting

equaticn 3.1 above. The effect will be a distorted image. This problem

is described in (3) and is known as '"range walk'. A resulting image
will appear as if each range profile is staggered in position relative
to its neighbor. This distortion is corrected by multiplying the mixer

output samples by a correction factor derived here.

P

Compensating for the range walk problem results in the following

modification of equation 3.1,

Nf,
C

RP(n) = b Nil expl j P (in+ i (r - VkT.,) + 2
N im0 N Ar 3

(r - VkT3))].
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This range profile equation can be reduced to,

VT
RP(n) -% explj ;—“ fotk ] iio explj -r%—! i((n-no) -k f)]. (3.4)

. or 6

LA s
-~

-_ -

F;;.v.:

By representing the response as an ideal impulse and ignoring low-level
sidelobes, this range profile is expressed by the following function

additionally dependent on burst number,

e =0

b VT3
RP(n, k) = N 8 (n-nO - k- e ).

-~ ..
v, ’,
e

This expression for the range profile looks like that in equation

3.3, on page 22, except that for each succeeding burst, the profile

-
[ A

position is offset in range position by a term due to target motion

“:5 Eg between bursts. This is corrected by multiplying the mixer output
Y
;:':' sequence for a burst by a correcting factor prior to computing the
'-» .’
' i transform. This modifies equation 3.4 so that it looks like equation
;: ! 3.2, resulting in a corrected range profile,
q.i L]
Ny U b 2n N-1 2n Vi3
h = b . 2n L 2m L T )
'::.. RP(n) N expl j N fo rk] iio explj N i(n n k - )]Sik,
,:':0: & where Sji is the range walk correction which equals
"!.u:!
b‘.' ‘.‘y
A VT
:::: o explj g—“ ik f ]. Then,
s N-1 VT VT
Ay . b _2m 21 oy L VT3 cam VT3
o RP(n) N expl j N fork] iio explj N i((n-n ) - k e )lexplj N ik 37 )

b 2 N-1 .21,
N exp[j N fotk] 150 expl[j N i(n-ng)]).

N \

V-V

' <. From this, it is seen that the range walk correction factor does restore
‘ 2

'::‘._" g the range profile to the proper form.
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3.3 COMPUTER SIMULATION

A FORTRAN program was vwritten to achieve the goal of producing ISAR
images in the laboratory by simulation. The dimensions of simulated
targets were specified, and their scattering functions were supplied for
use. The simulation contained two parts. The first part inputs the
scattering function and calculates the mixer output signals from that
target for all pulses and bursts transmitted. The second part processes

the signals using Fourier transform techniques, as described here, to

produce an image data file. An image display routine is used to display
the simulated ISAR image on a color monitor.
An algorithm is presented in Figure 3.4 to describe the programming

of the part of the simulation which calculates mixer output signals.

Read in Scattering Function
lncra:nt Burst Number »
[ €]
Increment Resolution Cell (v, ) « (i, j)
Increment Pulse Number n
I Calculate Received Signal S(n)
S, (n) = sk-l(") . s(n?
End L30p
Ksk+]
End Loop
Store S(n) in S(n, m)
End Loop
:oMmHze S{n, ) to max [S(n, m)] = 1.0

Algorithm of Mixer Output Simulation

Figure 3.4
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=

A two-dimensional array is used to store the resulting radar signals;

each burst forms a row of the array.

- Two analytic targets were chosen, a rough disk and a rough sphere.

(=52

The field-of-view of the image was chosen to be 76.8 meters in both

range and cross-range dimensions. The resolution in both dimensions was

>

chosen to be 60 centimeters. The scattering function is a 128 by 128

S
]

A

array of reflected power values. The diameters of both the disk and

sphere were chosen to be 38.4 meters with both centered in the field-

ey

.,

of-view. It was desired to write a computer program that would generate
o an image of size 256 pixels on each side with the same resolution of 60
cm in each coordinate. This is accommodated in the Fourier transform
. techniques by padding with zeroes. This results in an image that is
magnified by a factor of two and is easier to see on the color monitor.

r
6 In this simulation, 128 pulses per burst and 128 bursts are used in

the transmitted waveform. This covers the field-of-view of interest,

AN

given the resolution. The resulting two-dimensional array holding the

mixer output signal is of size 128 by 128. The range profiles are

" g |

calculated with an inverse discrete Fourier transform (DFT). This

Sadss
a&&

procedure uses a subroutine for DFT calculation which was supplied by

g the University. Also in computing a range profile, the 128 point signal

= is placed in the center of a 256 point array, padded on both ends with

; 64 zeroes, for the inverse DFT operation. The resulting 256 point range
‘.T.? ) profile, divided by the number of points, replaces the row of signal
::3: g: data in the two-dimensional array.
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In the final step of calculations, the cross-range profiles of the
image are made using a forward DFT on the columns of the two-dimensional
array resulting from the last operation. However, rearrangement of the
data in the 256 point array is necessary. Instead of placing the 128
data points in the center of the 256 point array, the first 64 data
points are pgi in the first 64 array locations and the last 54 data
points are placed in the last 64 array locations, leaving the center
array locations =zeroced. This is due to the way the DFT routine
operates. After the DFT is computed, the zero frequency location is in
the first array location, so the data are rearranged with the last half
of the 256 points switched with the first half. This is illustrated in
Figure 3.5. The squared magnitudes of the resulting complex numbers are
stored in each column of the two-dimensional arrav. The resulting
two-dimensional image data array is used with a color scale to displav

the image.
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Er

The computer listing is included in the Appendix in Figure 7.1. 1In

. the main routine, PROC3, the target's scattering function is input and
}-,a the mixer output signal is calculated. This signal is normalized to
J peak magnitude. Subroutine IMAGE2D is then called to reconstruct the
ﬁ image.
J_ As a part of this simulation development, a modification of the
E“ Fourier transform techniques described above was investigated. A
3 modified IMAGE2D subroutine was constructed in which the Pourier trans-
X forms were "windowed" with a normal function,
ﬁ w(n) = e - 0.09 (n-N/2)2 , n = index, N = 128.
<4 Windowing is described as multiplying the complex data sequence by
R the window function before calculating the transform. Due to the
E symmetry properties of the Fourier transform, each of the delay and
doppler transforms are windowed with the same function. This modified

E:' routine is called IMAGE2DW and is listed in the appendix.
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COMPUTER FACILITIES
The computer pregran was written in FORTRAN or a Massachuserts
Computer Company (MASSCOMFP) image processing computer, mcdel MC5.0, with
a color graphics displav terminal. The color of the pixels 1n the
raster displav are controlled by a color scale with 64 intensity levels.
A heated object color scale was chosen. Once a two-dimensicnal arra of
data is available, an image displav routine is executed which reads the

data and generates the image or the screen. A picture of this facilis

Fhotograph of Computer Facilities

Figure 3.6
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3.5 SIMULATION RESULTS

Several scattering functions with the same resolution and size were
used in tests of the ISAR imaging simulation. These scattering func-
tions can be displayed to see what the actual target looks like. Their
data arrays are sized 128 by 128, but it is desired to see them as a 256
by 256 pixel image. Therefore one data point drives 4 pixels in order
to double the size of the image. As first test cases, point target
pairs were used. One pair has a point in the center of the image, at

location (64,64) of the 128 by 128 scattering function, and a point at

(64,96). Another point target pair uses a center point and a point at

(64,66). The ISAR imaging simulation was used to reconstruct ISAR
images of the scattering functions. These radar images are displayed in
Figure 3.7 with the closely spaced pair on the left (a). The resulting
images are 256 by 256 pixels in size due to the processing implemen-
tation described above. The fact that the radar images look like the
scattering functions confirms the proper operation of the ISAR praocess-

ing for these test targets.

(a) (b)

ISAR Images of Point Target Pairs
Figure 3.7
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) During image display, the image data is scaled to the color scale
1,
' |
so that the peak value is shown as white and zero values appear as q
: black. In the images in Figure 3.7, the peaks of the responses from the
5 point targets are seen very well. However, there are also sidelobes to
R the peaks which are subdued in these pictures by the color scale and the
" effects of film processing.
&) The scattering functions of the rough disk and rough sphere are
‘v
i
g displaved in Figure 3.8. These scattering functions come from reference
5 (1). The disk is shown on the left (a) in the figure. Note that the
o
$ sphere (b) shows the effects of shadowing which makes the illumination
‘!
¢ look somewhat 1like a partial moon. Also, the reflected power is
ﬂ greatest from the point on the target closest to the radar and decreases
9
h for points closer to the shadowed edge. 1In this figure and in other
i
B similar images shown here, the radar is illuminating from the left side.
3
‘ }
)
)
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)
o
"
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(a) (b)
)
)
* Scattering Functions of Disk and Sphere
é‘ Figure 3.8
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Reconstructed images of the disk uznd sphere are presented in Figure

-
-
-
<

3.9. Horizontal corresponds to the delay dimension and vertical to the

doppler dimension. Note that the sphere's image (b) looks like that in

£
vy
gxs

Figure 3.2. The disk's image is on the left (a) in Figure 3.9. There

is substantial low-level sidelobe energy in the image which can be

o
.
e

N

45 smoothed out by windowing, but results in a loss of resolution.
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- !: ISAR Images of Disk and Sphere
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' é . Figure 3.9
b‘ﬂ " An image of a center located point target, reconstructed using
ﬁ;' windowed transforms is shown in Figure 3.10. The window is described at
L) ) -:':
) J? - the end of Section 3.3. As can be seen, windowing blurs a point target.
|
;,{ ;I The profile of the image is also plotted in the figure. The plot also
L N
" shows the form of the window. A similarly windowed image of the spheri-
N
CHERIN cal target is presented in Figure 3.11 along with the profile plot.

Those images suggest that the blurring introduced by winderwing reduces

,---
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== image quality, but side-lobe energy is reduced.
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Windowed ISAR Image of Center Point Target

and Profile Plot

Figure 3.10

Windowed ISAR Image of Spherical Target

and Profile Plot

Figure 3.11
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4. STATISTICAL TARGET MODEL

In the preceding chapter, the reflectivity of the target surface,
for each resolution cell, was taken to be a fixed real value equal to
the square root of the scattering function value. This was for the
purpose of verifying the ISAR processing. The next desired steé was to
image a diffuse target surface. The reflectivity of a diffuse target is
a complex random process.

The resolution cells are distributed in the delay-doppler plane.
Each is described as a slowly fluctuating point target in the presence
of additive noise. The resolution cell is made up of several reflecting
surfaces which combine to produce a random reflected signal. Slowly
fluctuating means the reflectivity is partially correlated relative to
the transmitted signal pulse burst period.

4.1 MODEL OF A SLOWLY FLUCTUATING POINT TARGET

The source for this model is Van Trees (5). The radar's trans-

mitted signal is represented as follows:

~ ~
sp(t) = A £(t) exp[j2nf t]

where g(t) is the normalized complex envelope of transmitted signal,
A is the amplitude, and fi is the carrier frequency. The power of such
a signal is Az, from (6,7).

Consider a point target in space, representing a resolution cell in

the delay-doppler plane with zero velocity. The reflected signal from

such a target includes the effect of the random reflectivity process.
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This noise source is multiplicative and the received signal can repre-

sented as follows:

:t(t) -b ?(t'T) expl j wai(t-1)].

-l - -

where v is round trip delay. The temrm b is a complex Gaussian randonm
variable with zero mean. The variance of the real and imaginary com-
g ponents is equal to half the power of the reflected signal. A point
' target with non-zero velocity will have the same form of reflected

signal, but the carrier frequency will be shifted by the Doppler effect.

-

A target which is extended in the delay-doppler plane, and slowly

s = SSmems =\ S y 4 9 Am—— F 9 y r y F y = ¥ 3 AREC AR

3 fluctuating, is considered to be composed of an array of point targets
P representing the resolution cells, each contributing a reflected signal
¥ of the above form. So, the total received signal from such a target is
.
: the sum of the received signJ!b from each point target. Representing
- this sum and the additional fecture that the signal has a doppler
?E frequency shift, the received signal can be expressed as,
: ;;(t) = T ; ;(t-Tu) exp[j(wi + mr)t],

u,v
i
5' where wo "W, ;:5 is the doppler frequency, w, = wai. the transmitted
? frequency, and (u,v) is an element of the delay-doppler plane.
- The random reflectivity term has the property that it is wide-sense
E stationary and spatially uncorrelated. This property along with the
; slowly fluctuating property implies an approach in simulating the mixer
. output from a target.
25 For a resolution cell, the reflectivity from pulse to pulse is
:. correlated by using a recursive filter. White Gaussian noise is
3 filtered so it has a desired autocorrelation function. Two filters are

"N - (7 230 ‘PR VLR
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operated to generate separate outputs for each of the real and imaginary
comp.....ats of the reflectivity.

The following recursive filter was chosen from (8),

B G 6 o

2,1/2

Yn - ‘Yn-l + (1-2%) xn.
" The input paramster Xn is a vhite gaussian variable which has a weighted
B '
.1:& contribution to the output value Yn’ The previous Y“_1 value has a
Yl
.’:f' w weighted contribution to the output. The autocorrelation function of
™ 3 the filter output,
BN
:"‘:-‘, Ry(k) = Ry(o) alkl = g,2 aikl
c' .

T -
-
-

' . The shape of the autocorrelation function is shown in Figure 4.1. The
. slope of the function near the peak is used to relate the parameter a to

Bl “ correlation interval parameter CI .
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ISAR processing calculates the Fourier transform of the delay-
¢ : doppler signal having random reflectivity. The result can be viewed as
_' a convolution of the desired power density of the target with a poor
' estimate of the power spectrum of the random variable, as described in

(6, Chapter 11, Section 3). This signal is itself a random process.

’ - - -

The power spectrum of the correlated reflectivity components is given in

AN y i __GEES Ssh Sk @ See 2 EBE s mma |

(7,8,9),
2
X S (k) = |H(k s_(k),
; y LICOTRIEN(Y
& where Sx(k) is the power spectrum of the white Gaussian noise, Sy(k) is
B the power spectrum of the filtered noise and H(k) is the filter's
< transfer function. However, the Fourier transform of a limited sample
5 of a random process is itself a randomly varying quantity. So, the
|
ﬂ convolution results in random signal and resulting ISAR images are
*, expected to look noisy.
N
q The effects of additive noise are also to be included in the
)
o
# simulation of the received signal. Adding this term to the equation for
i the received signal yields the following:
’{' - - ~ -
\ s.(t)= & f(t-v)be’ 2rf, (t=1) | (o)
L‘ u,v
. The last term is a complex gaussian random process with zero mean.
d
L
o It is included to model wideband channel and receiver noise. The first
¢
r part of the signal is normalized to power equal 1.0, and the variance of
> the additive noise term is varied to produce a desired signal-to-noise
< power ratio (SNR),
,} ps
SNR = P o°
. n
h]
Y
d
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o
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k ol ot —

where Ps and Pn are signal and noise power over the receiver bandwidth.

= G

P 2
Further, SNR = §§ = éi , where A is the signal amplitude, and since
n B

A2 = 1, then B = 1//SNR. Thus the standard deviation of the real and
imaginary terms of complex white Gaussian noise are B/JZ.

Because of the linearity of the Fourier transform, the result of

ISAR processing the above mixer output, with the additive noise, will

s =~ =R

add to the image a signal which is the Fourier transform of the sampled

white gaussian noise. Since the noise is white, it is expected the

| -

image will have noise added to it all over the field of view.

e
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4.2 TIMPLEMENTATION IN THE SIMULATION
The computer simulation, written in FORTRAN, was modified to

calculate a received mixer output signal from a diffuse target. The

A AL <+ =~ |~ *]

scattering function of the target is input into the simulation, which is

a delay-doppler mapping of the reflected signal pover for each

resolution cell. The target is slowly fluctuating, so the random
reflectivity of each call of the scattering function is statistically
correlated in time. This implies an outer loop which increments
resolution cell. The algorithm of this computer program is presented in

Figure 4.2.

Read in Scattering Function
Find Sum of Total Power within Scattering Function
Initialize 20 Array for Mixer Qutputs to Zero (FRAME)

Increment Resolution Cell (i, J)
Initialize Random Reflectivity Recursive Filter
Increment Burst Number m
Increment Pylse Number n
Pick Correlated Random Reflectivity
Calculate Mixer Output S(n)
Sum Mixer Output to 2D Frame (n,m)
End Loop
End Loop
End Loop

Calculate Desired Noise Standard Deviation from SNR
Increment Burst Number m
Increment Pulse Number n
Pick White Gaussian Noise
‘ Normalize Mixer Output
Add Noise to Mixer Output
End Loop
End Loop
End

Algorithm of Mixer Qutput Simulation
Using a Correlated Statistical Target
and Additive White Noise
Figure 4.2
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For each resolution cell in the scattering function, one at a time,
the mixer output for all pulses in all bursts is calculated using random
number generators to get a complex Gaussian random number for reflec-
tivity. The mixer outputs are stored in a two-dimensional array. The
whole received signal is the point-to-point sum of two-dimensional
arrays from each cell. '

After all cells have been incremented, and the two dimensional
array contains the mixer output resulting from the whole target, the
mixer outputs are normalized to power equal 1.0. Then Gaussian random
number generators are used for additive noise with power adjusted to get
a desired signal-to-noise ratio.

Returning to the part of the algorithm where the mixer output for a
pulse is calculated, the mathematics which is used to carry this out is
developed in the following way. As described before, the received
signal is composed of components from all resolution cells in the target
and includes added noise. Assuming the received pulse's envelope ?(t-r)

is unity, the received signal can be expressed as,

Er(t) =5 pedlugt w )t n(t).
u,v

This signal gr(t) is mixed with ej w4 t. the carrier signal, to give the

mixer output signal which can be written as,

~ N - ]
s = I be j wrt + ﬁ;,
u,v
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3

Letting Bi = wt, with i indicating pulse ‘number, and

b = b(u,v) = {bjed®b then,

- - —v_’

s =z (pled) 4 n
m m
u,v

. -
-

Ty Since cos(¢b-ei) = cos¢, cosei + sin¢b sinei .

and sin(¢b-ei) - sin¢b cosai - cosé, sinei ,

L)
]
+ ~
) s = T {(Ib} cosd, cosf, + lb|s1nob sing.)
{ u,v
& + j(|b151nob cos8, - iblcosob sinei)}.
: ~ ~
- Let A = }blcos¢b, and B = Ib‘sin@b, where A and B are Gaussian random
_ variables with zero mean and variance aA = oB = A(u,v) then,

N

T {(a cosé, + B sinGi) + j(B cosB, - A sinei)}
u,v

PR I R SN
L]
L}

The computer program listing which incorporates this implementation
of random reflectivity is presented in Appendix 7.1. The 1listing
includes subroutines for random number generation which were supplied by
the University. The function NRMRAN generates a normally distributed,

uncorrelated random number of specified mean and variance equal 1.0.

Zero mean was chosen, and the standard deviation is choosen to result in

ff the desired power. The reflectivity is correlated from pulse to pulse
fj by the subroutine SUATTER. However, the reflectivity of each resolution
;3 cell is made independent.
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TSAR image °f a ro:int Target with

‘rrefated Random Reflectivity

Figure a3

- Gl 3TMITATION RESULTS
: Severd: litferent rargets were used for I[SAR image generation to
< g ge 8§
N
" abserve the effects of correlated random reflectivity and additive
SN notse. First, 4n 1mage was generated from a point target, liocated in
RS
. thne venter of rhe field of view, using 4 correlation interval length of
- 4.0 puise intervals, and no added noise. This image is on the left (a)
W
SO in Figure +.3. A correlation interval of 4.0 means a correlation time
K~
’_ ‘. YO0 TRE il se s, toi= oseen rhat the roiat fgrget s nrer cunios
[- - ible Jdue ro the random rerlectivitv., Also, rhe lmage noise s concen-
. -
s -
hetween bursts.  So, the image is less random in the Jdeiav dimension,
-~
A Ao ie e norizenta: in Flgure wl i The image nothoe cignt oo PPRN
.
~' - . . . . .
KSR generassd from “he same point target using the <ame ~orre afl-on interval
v
L - cnccrdiong elditive nolse asing o an SNROor 10 decine s, CEIR seen e

added

f e

noise has

Iittle effect on the image.
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(a) (b)
ISAR Image of Spherical Target with Random

Reflectivity and Additive Noise

Figure 4.4

For a comparison, an ISAR image was generated from the spherical
target, using correlated random reflectivity of correlation interval 0.5
pulse intervals, and additive noise with SNR of 0 decibels. This image
is shown on the left (a) in Figure 4.4. On the right (b) in the same
picture is an image resulting from processing a mixer signal containing
oniv additive noise. The result 1is completely random noise ana is

. . . c o . - . . ' .
Tlestinguienah e Trom o trne snheral s image.,

Several images were generated in a parametric studv of the effects
ot the correldation interval value. A point target in the center ¢ “he
image 13s used. No added noise was put in the mixer output signal. 3Six

1ma were gJenerated, each with a Jdifferent value of correidtion
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interval. The results are displayed in Figure 4.5 with horizontal being

the delay dimension. The correlation interval value increases from

image to image going from top left (a), to top right (c), to lower left
(d), to lower right (f). The noise in the image seems to progressively
narrow horizontally into a vertical line, and then the line shortens

toward a point, as correlation interval increases. The six correlation

interval (CI) values are (a) CI = 0.5, (b) CI = 4, (c¢) CI =10, (d) CI =
128, (e) CI = 256, and (f) CI = 1100. The noisy image becomes a line
when the correlation interval equals 128 pulse intervals, the same

length as a burst, the point at which reflectivity is essentially random

only from burst to burst.

(a)

Ll Lo

8y

ISAR Images of Point Target Using
Various Correlation Interval Values
Figure 4.5
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The simulations presented in Figure 4.5 were repeated using the

”

sphere described previously as the target to be imaged. The results are
presented in Figure 4.6. It is seen that as correlation interval

increases the target becomes more recognizable.

(a) (b) (c)

(d) (e) (f)

ISAR Images of Spherical Target Using
Various Correlation Interval Values

Figure 4.6
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Additionally, examples of windowed ISAR images were generated to
see the effects of windowing on diffuse targets and additive noise. On
the left (a) in Figure 4.7 is a windowed ISAR image of a center point
target having a correlation interval value equal 1100 pulse intervals
and no additive noise. Windowing seems to make this point target look
like an amorphous blob. The image on the right (b) in the same figure
has the same target with additive noise of SNK equal 0.0 decibels added
in the signal. The resulting image has additional blurry background.
These images suggest that using windowing in generating ISAR images in

the presence of noise does not improve image quality.

(a) (b)

Windowed ISAR Images of Center

Point Target

/

X} E Figure 4.7
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‘
:. 4.4 POWER SPECTRUM ESTIMATION
?: As described before, the mixer output from a diffuse point target,
% with no added noise, is a temporally correlated random reflectivity
%z multiplied by a delay-doppler signal. In generating an image from this
35 mixer output, Fourier transforms are calculated. The resulp can be
'S viewed as the convolution of the power density of the target, the
. desired image, with the Fourier transform of the random reflectivity.
e The transform squared magnitude of a sequence of random numbers is
;i called a periodogram in (6). Also, this is described as an estimate of
7? the power spectrum of the random process. If the Fourier transform were
,; an unbiased and consistent estimate of the power spectrum, the error in
;S the estimate of the power spectrum would approach zero as the number of
.? samples of the random process gets very large. However, this is not the
& case. It is shown in (6) that the periodogram is a biased and incon-
:; sistent estimate of the power spectrum of a random process. The esti-
4
"

mate is biased because the expected value of the periodogram does not
Q equal the power spectrum using limited sample length, and the estimate
is inconsistent because the variance of the periodogram does not
\ approach zero as more samples are used in the calculation. This means
) that ISAR processing as it is conventionally performed cannot accurately

reconstruct the power density of of a diffuse target, equivalently the

;?_ scattering function. An approach for improvement of the power spectrum
" estimation is the Welch method described in (6). In this method, the
f: data is windowed before the periodogram is computed and several of these
ft' smoothed periodograms are averaged. This would require the averaging of
;: several reconstructed images. The Welch method yields a power spectrum
0
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estimate which is biased for limited sample length, though asymptoti-

- -
-~

cally unbiased, and the variance of the estimate is expressed as

ey follows.

&
-
Lo,

:."A Variance [B (w)] ~ 1 P2(w) ,
[N K |

where B is the Welch estimate, K is the number of periodograms averaged,
and P is the power spectrum of the random process. The Welch method
sacrifices spectral resolution and bias for a consistent spectral

estimate. Using the Welch method with limited data probably will not

23 3 KA

I result in a good reconstruction of a scattering function.
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5. SUMMARY AND CONCLUSIONS

This thesis work consisted of developing an ISAR imaging simulation
using a computer program to input a target scattering function, generate
a simulated mixer output signal, and reconstruct an image of the target
from the mixer output signal. In the results of Chapter '3, the
reflectivity process was fixed at a constant value for each resolution
cell, allowing the verification of the ISAR processing since the
reconstructed image is expected to look like the scattering function of
the target.

With the ISAR simulation verified, the next step reported in
Chapter 4 was to implement random reflectivity and additive noise. This
was to use the slowly fluctuating target model described in (5). The
complex random reflectivity process was correlated in time using a
recursive filter. The random reflectivity was kept spatially
independent. The results of generating ISAR images using random reflec-
tivity of diffuse targets‘ and additive noise are presented. The
reconstructed images show that the random reflectivity has great effect
on the image. As a result, the actual target cannot be recognized from
the image unless the random reflectivity is highly correlated.

The conclusion is that ISAR processing attempts to measure the
power density of the mixer output signal which would look the same as
the scattering function, but the random reflectivity makes the
calculated power density a random quantity and so the result is a noisy
image. Fourier transform techniques yield unsatisfactory results in

this application of power spectrum estimation theory.
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APPENDIX 7.1
Program Listings

The listings of the Fortran-77 programs and subroutines used to
simulate the mixer output signal and perform ISAR processing to
reconstruct an image are imcluded in this appendix. A brief description
of each program and subroutine follows.

PROC3, listed in Figure 7.1, calculates a mixer output signal from
an input scattering function data file. A non-statistical target is
assumed. Subroutine TARGET reads in the scattering function.

VT = Tangential velocity of the target

XFOV, YFOV = Image field of view dimensions

CRX; CRY = location of center of rotation in scattering function

Tl = pulse width (sec)

T3 = Burst length (sec)

W = angular rotation rate in radions per second

BW = bandwidth of burst

FO = lowest frequency (Hz)

FC = center frequency

DF = frequency step size

WL = wavelength

» N = number of pulses and bursts

XRES = resolution in meters

RWCF = range walk correction factor

Subroutine IMAGE2D, listed in Figure 7.2, performs ISAR processing
to reconstruct an image from radar received signals. The discrete
Fourier transforms are implemented wusing Singleton's Fast Fourier

transform algorithm.

L S = o TN » LY. J % g N T
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PROC4, listed in Figure 7.3, calculates a radar received signal

o ok s ek

from an input scattering function data file. This routine is a i

modification of PROC3 to include the effects of a statistical target and

A

additive noise.

CI = correlation interval (# samples) of random reflectivity

SNRDB = signal to noise ratio for additive noise in decibels

-
R A JUg

Subroutine SCATTER, listed in Figure 7.4, generates components of

- -

complex random reflectivity which are correlated in time by recursive I

O o)

filtering white gaussian noise.

-
£
"'

Subroutine IMAGE2DW, listed in Figure 7.5, uses data '"windowing" as

part of the Fourier transform techniques which generate an image.
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PRQOGRAM PROC3
DIMENSION 3¢128),34123)
REAL LAMBDAC(128,128)
Complex FRAME(256.25¢)
o Integere4 luns
common ‘bikl, tyns
‘:......QQ'......’.".."...QQ..'......"'....Q..'.."..Q...Q'.'
Ce -
Ce ISAR IMAGING USING A STEPPED-FREQUENCY WAVEFORM »
C» -
Cw» BOB LEWIS, DECEMBER 1984 L
CHRuaaasaititiatitiattttdantiaaitetttteRiteiasitEttRianttasitneanesnnes
Cm3.€0
C2=2./C
Pl=3,14135927
P12=2, &P!
RES=Q .o
N, N=128
1, YRES=RES
\ XRES=RES
WLCF=0 .03
FCsC/WL.CF
RWCsP!2/YRES/N
XFOUmNaXRES
YFOUsNaYRES
CRX=(N/2-1)#XRES
CRY=(N/2~1)#YRES
Ti=2,4YFOU/C
T12=T1/2
BW=C/(2.#YRES)
FomFC-8W/2
WL=C/F9
THETA=WL / ( 2#XRES)
RANGE=12.35#1832.
] UT=d400.#18%52,/3600.
) WeUT,/RANGE
2 - TIWTHETA/ (W)
4 T2=mT 3/ (N1,
¥ TamsNeT3
DF =B/ (N-1)

P
Es o

Ze.
X |

[

LA I

-]

s
8y
’

CALL fcreat( Enter output frlename ‘,luns)

‘

k)
¢ Caennes READ IN THE TARGET'S SCATTERING FUNCTION coRANITRRRNY
CALL target(LAMBDA)

ol
535

Cesssne CALCULATE MIXER OUTPUT SIGNALS AND STORE IN FRAME essss
L=o6S
DO 100 Tme,,T4,T3

AP 00 8 x=1,128
,!..I ~ S(K,=Q,
o Q(K)=d,
2P se CONTINUE
-, DO 38 J=i,128
‘% >, <m¢ J-1) eXRES~rRY
n. h = . #ly
l. -
K
3, -n '_.‘-
K Y
)
D N
) i PROC3
o Figure 7.1

30
LA _:.’J
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VC2wUuC2
RWCF=VaTaRWC
D0 70 I=},128
IF(LAMBDAC(] ,J) .EQ.0.)G0 TO 7@
AsLAMBDAC(] ,J)#ed .3
Y=m(]-1)8YRES
OELAY=C2ayY
DO 68 K=y ,128
KisK=1
FlmK]sDF+F@
PHI=P] 28F I s (DELAY-VC2#T) +K1 #RWCF
S(K)mS(K)+auCOS(PH])
QK)=QK) +ASSINCPH])
608 CONT INUE
? CONT INUE
-1] CONT INUE
00 98 k=i ,128
FRAME(K* 64 ,L)=CMPLY (S(K) ,Q(K))
99 CONTINUE
L=+l
100 CONTINUE

Cesnsns NORMALIZE MIXER OUTPUT SIGNAL TO PEAK=].)
Px=@,
00 120 L=1,2%5¢
DO 110 k=) , 296
PK=MAX (PK ,ABS(FRAME (L ,KY))
118 CONTINUE
120 CONTINUE
PKINVm] , /PK
D0 140 L=) ,2%5¢
DO 130 Kk=1,2%6
FRAME(L K sFRAME (L, K) #PKINY
130 CONT INUE
140 CONTINUE

(222X XXX XXX 3

Cesnsse RECONSTRUCT THE TARGET 'S [MAGE sssenssvsasvesces

CALL image2D(FRAME>
stop
end

PROC3

Figure 7.1 (Continued)
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Subrout.ine magell <rame)

Real 1mage(236,236)

Complex ¢¢(236)

Complex frame(2%6,2%6)

~ommon ‘Dlkl‘ lTyns
Cl..6..QQQ.Q.Q...QQ'Q.'.'.....'....'QQ...QOCQQQI.""

Ce M
Ce This Subroutine reconstructs a radar 1mage L]
Cn by using Fourier transéorm techniques »
Cs Bob Lew:s, December (986 -

CRERRNBARORNVIBVNTRIANERBIVRROVBRNCRVVRARRBVRERRRARRRRRES

=g
Cannsana DELAY DIMENSION RANGE PROFILES
D0 120 ,=1.25¢
D0 190 i=1,2%¢
fC)=con gl framed: ,y))
180 CONT INUE
CALL FFT(¢ M)
DO 110 1=1,2%6
frame (., )mconyQ($(1))%9,0039843
119 CONT INUE
120 CONT INUE

ABBRARNBARS

ARRNBBRARBARG

Canssnne DOPPLER DIMENSION PROFILES
DO 158 :1=1,2%¢6
DO 129 J=1,236
f(y)mcmpix(®.,0.)
125 CONTINUE
DO 130 J =1,64
$(e08)=frame (1 ,+128)
f(ye128)mérame (1, +64)
130 CONT INUE
CALL ¢¢t(f M)
00 140 ,;=1,128
IMaQe (1, +128)=abs (€ ) )na2
image 1,y mabs(£( +128)  0a2
149 CONT INUE
1350 CONT INUE

nby tes=2346#236%4
CALL fwrite(luyns, mage,nbrtes)

Return
END

IMAGE 2D

Figure 7.2
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PROGAN PROCA

REAL LAMBONC(120,120)

Integered I1RAND1, I RAND2

Complex FRAME(296,2%6) ,CNOIS
common  Dikl/s luns

Common /DIK3/ Y1 ,Y2,1RANDL ,IRAND2
Dimension GAUSS(2)

CRasgasssaataantiidiansioanRtelRadicditacaeRainssaniaadilagesanenscassass

Cs
C»
Ce
Ce

ISAR WITH CORRELATED COMPLEX RANDOM REFLECTIVITY
AND ADDITIVE COMPLEX GAUSSIAN WHITE NOISE
908 LEW!S, DECEMBER { 98¢

-
-*
-
L 2

CRasasassssaisasingansiaiessaaiosgicliodtaintsanaualnaiassssaasneasnsce

C=3.E0

C2=2./C

Plel, 1415927
Pl2=mé, 2831834
RES=0 .4

YRES=RES
XRES=RES

Nm1 28

Wi=9.03

FCaCAiL
XFOMVSNEXRES
YFOUmNaYRES
CRX=(N/2~-1)#XRES
CRYs(N/2~1)#YRES
Ti=s2.e0YFOU/C
Ti2=Ti/2.
B=C/(2.0YRES)
Fo=FC~-Bl/ 2
THETAR20AS INCWL/ (4UXRES) )
RANGE=12.3«18%2.
VUT=400.01832. /3600
WaUT / RANGE
TI=THETA/ (WaN)
T2=T3/(N-1)
TauNeT3

OFeBW/ (N-1)

PRINT #, Input corretatiron :nterval "
READ «,CI

CALL fcreat( Enter output ¢ . iename ' ,luns)

Cennnane READ IN THE TARGET S SCATTERING FUNCTION sscsesscse

\‘: ir -,

K !\' I 0\ i.‘.! QQ !.v "‘Q.l"!' Q.I'. '

CALL targe t(L_AMBOA)

SNRDO=Q . &
IRAND 1 =322491219
I RAND 2w 7

PROC4

Figure 7.3

.~

[l

~ U R

"%
AN

AN W

AN




" X am

Y W =

PR IR
o e -

- o,
-

o

- Tl

&5 X

. -
-"- ’l\'

-
-
¥ i

‘l o

e
e *.0
¢

»

"
Ay .
h W
eﬁ }’f.
™
.'\
L
e
e
R
. ]
!% Gﬁ
ot
) g
RN
it
&

W
S I
ity W
.
W~
JEE
"' l'*
LN
b
(
X 3
&
5
Iy M‘

RO w000
ARSI N !J;‘s.". B

oy '!d Yy 'I"o' ‘ or A e ot
- R S B R St T LRI S R AN Mo Kot AR Bt Mo RNl ¢ St S

-59-
c.................................................."...........Q...
Cesassees SUM TOTAL POWER IN SCATTERING FNC LAMEBDR cssssee

Cessseas INITIALIZE 20 ARRAY CONTAINING MIXER OUTPUT SIGNALS sessces
(8000000 000000000000000000000000000000000000000800800008000000000000
SUMP=g .
D0 40 1=}y ,1289
00 30 J=i, 128
SUMPaSUMP+ LAMBDA(] . J)

FRAME(1+64,J064)m¢,
E CONT INVE
49 CONT INUE

CEEaaneee ettt sIeaaaieisssaaNEastsaiisctnesiosisseaainasaseeeesses

Ceaensnae CALCULATE MIXER OUTPUT SIGNALS AND STORE IN FRAME (222 LYY

Caaccans Loops 90 & 100 change resolution cell - assueses
(£ 22221 1 Loocp 89 steps burst ® , Loop 60 steps pulse @ sncsens
Connones Subroutine SCATTER picks random reélectivity seensae

[ XTI TYITRITTTZITTTYTT T YT Y YT YTy Ty vy Yy YTy Y Y Y Y Y Y Y Y Y Y YR YY YT Y
D0 100 Jwi , 128
Xm(J=1) eXRES-CRX
VexseC2
DO ?9 =) ,128

IFCLAMBDACT ,J) .EQ.0.)80 TO 90

G=(LAMBDAC] ,J) 0§ .9)ee0.3

Y=(]-1)eYRES

DELAY=C2eY

L=6S

CALL NRMRANCIRANDI , I RAND2,GAUSS)

Y1=GAUSS(1)eG

Y2»GAUSS( 2) oG

DO 80 T=g, ,Te,T3

DO 60 x=1,120

Flm(K-1)eDF+FQ
PHI=P]2aF] # (DELAY~VeT)
CALL SCATTER(G,C!,A,D)
S=aeCOS(PHI ) -BeSIN(PHI)
GmBeCOS(PHI) +AeSIN(PH])
FRAME (L ,Ke64)mFRAME (L K+ 64)+CMPLX(S,Q)

60 CONT INUE
Lei e}
8e CONT INUE
” CONTINUE
100 CONTINUE

c....Q.........Q..Q....................................Q.'OOQ.....'IQ.Q
Cossces Calculate standard deviation of additive noise from SNR eesaces
Cossens Pick additive white Baussian noise values esesass
Cessces Normal.ze mixer output signal (FRAME) to power=l . @ onssses
¢ AQGG hoise tOo mixer output signal sssenes
(W T YT Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y LYY Y Y Y Y Y Y Y Y Y Y YY)
ACS=1./SUMPeel .S
SNR=1 g . ea (INRDO/10.)
ANOIS=] ./INRee9 . 3
SONO1 $=aNO1 Se@ . 7071
DO 120 L=¢S,192
00 110 Km¢S,192
CALL NRMRANC IAAND1 , IRAND 2, 0aUSS)
SNO1 S=GAUSS( 1 ) #SONOI S
GND 1 $=0AUSS( 2) #SDNO1 S
CND ] 9=CMPLX(SNOI S ,GNOI S
FRAME(L ,K)=FRAME (L ,K) ®SACS*CNO1 S
11® CONT INUE

120 CONTINUVE
CALL image2D(FAMME)
sTOP
END

PROC4

Figure 7.3 (Continued)
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subrout ine scattertg,ci,a,b)

CI............l..........Q.......'.........................I........

Cessaen This subroutine Qenerates complex random reflectivity

Ceessse values which are correlated 'n time Dy recurs:ve

Ceeeses

Cescaee Clscorreiation nterval (W samples,

Coscces Bob Lew:s, Dec. 1906

“iltering white Gauss an ncise, suppl ed o> NRMRAN.

ansee
aBave
[ X 2 X X 3
L2 222
(122X 3

cI...Q.......'............Q...............Q.....Q..Q..............'.

Integered randi,irand2
common /Bik3d/ ¥i,y2,irandl, i rand2
dimension Qauss(2)

CALL nermran¢irandi, irand2,gauss)
LR -TULY SEBE -]

Q=Jaysg( Q) eg

alpham-1 ,0/¢:

rhomexp(alpha)
Qamma= (| .-rhose2)#ed .3

yisrhosyi+gammasx!
y2urho®y2+gamma#x2

asyl
bwy?2

return

ENO

SCATTER

Pigure 7.4
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Subroutine mage20¢érame)

Rea! 'mage(236,2%0)

Tompiex ¢12%e)

Complex ¢rame(2%e,2%&°

gimension wi(129)

common /Dikl/ luns
CIOQC..Ql......’.........QQ.C.....Q.....OQQ.COQ.QO...

Ce -
Ce This Subroutine reconstructs a radar image .
Ca Dy using windowed Fourier transforms L
Ce Sob Lewis, December 1986 .
CRresssualidaataitiliaeiasitaiasatslineiasalaessenassensaes
=g
s¢=3,.941

Cosanane CONSTRUCT WINDOW S48astenssnessssisentassnne
D0 10 '=1,128
wl' ' myfReqp( -9 .39 ~nd eal,
1® CONT INUE

Connsnse DELAY DIMENSION RANGE PROFILES senasunnnse
00 120 ,=1,236
DO 100 1=1,23¢
fCi)mconyQ(frame( ,,))
100 CONT INUE
D0 101 1=1,128
FC1+864)mE( 1 +64) M) (1)
101 CONT INUE
CALL FFT(¢ M)
DO 110 1=1,2%6
frameC i, )mcon Q($(i1))48,0039043
110 CONT INUE
120 CONT INUE

Coananes DOPPLER DIMENSION PROFILES seBNBRRERAERES
DO 130 =) ,2%6
00 123 ,=1,2%6
$(y)mcmplix(d.,0.)
123 CONT INUE
DO 130 ,=1,44
fCyvé68)mframeCi , +128)
$( e128)mframe((, *64)
130 CONT INUE
00 131 ,=1,128
$C 084 )m6( 268) 01 Cy)
131 CONT INUE
CALL ¢4tCé,M)
DO 140 ,=1,128
imageC , ¢+128)mabs( ¢ )) 082
image(t , ) )mabe($(,+128))0a2

148 CONT INUE
120 CONT INUE
NOy tesm234825444
CALL ¢wr te(luns, mage ,nbrtes)
Return
END
IMAGE 2DW
Pigure 7.5
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THE USE OF MAXIMUM-LIKELTHOOD ESTIMATION FOR FORMING
IMAGES OF DIFFUSE RADAR-TARGETS FROM DELAY-DOPPLER DATAt

Donald L. Sayder
Joseph A. O’Sullivan
and
Michael I. Miller

Electronic Systems and Signals Research Laboratory
Department of Electrical Engineering
Washington University
St. Louis, MO 63130

ABSTRACT

The expectation-maximization algorithm for computing maximum-likelihood estimates
iteratively is used to develop a new approach for processing inverse synthetic-aperture radar
data to form images of fluctuating, diffuse radar-targets. The scattering function of the target
is imaged by jointly estimating the power spectra of wide-sense stationary reflectivity-processes
occurring in all the range cells that span the target. The complex-valued reflectivity processes
are also estimated. The results we obtain apply to imaging-radar systems operating at radio and
optical frequencies when target echos have no specular or glint components.

t This work was supported by the Office of Naval Research under contract N00014-86-K0370.
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1. Introduction

An inverse synthetic-aperture radar (ISAR) system is used to form an image of a radar
target. This is accomplished by illuminating the target with a series of pulses and observing the
return echos. Each patch on the target introduces a certain amount of propagation delay and
doppler shift to a pulse it reflects, the amount depending on the range and range rate of the
patch relative to the radar system. The received signal for each illumination is a complicated
superposition of the reflections from all patches that make up the extended surface of the

target. The goal in processing the received signal is to produce an image of the target.

The design of an ISAR system includes the selection of the transmitted waveform, the
selection of a model for the reflection process by which a portion of the transmitted waveform
is returned to the receiver, and the selection of the algorithm used to process the received
waveform to create the target’s image. The beam-width of the radar antenna relative to the size
of the target is also a design consideration; images can be produced by either scanning a
narrowly focused beam over the target in some type of raster pattern or by illuminating the
entire target in spotlight mode with a wide, relatively unfocused beam. Our concern will be

with forming images of rotating, rough targets using a spotlight-mode radar.

Stepped- frequency and linear-FM chirp are two modulation formats used with transmitted
pulse-sequences in spotlight-mode radar-imaging. Stepped-frequency pulses are described by
Prickett, Wehner, and Chen |1}, Ruttenberg and Chanzit [2), and Chen and Andrews [3]. The
target is illuminated with a sequence of N pulse-groups, where each group is identical and is
formed from a sequence of N narrow pulses having equal incremental steps in frequency. The
usual approach for processing delay- and doppler-shifted echos acquired by illuminating a
rotating target with this waveform consists of two steps. The first is to place the data,
consisting of one sample-value per transmitted pulse, into delay (or, range) bins by separately
Fourier transforming the N sample values from each pulse group. The resulting delay-binned
data are placed in the rows of an NxN matrix, where each row contains the transformed data
from one pulse-group. In the second step, the columns of this matrix are Fourier transformed
to obtain a doppler (or, cross-range) profile at each delay. The resulting two-dimensional array
is intended to be the target's complex-valued reflectance function in delay (range) and doppler

(cross-range) coordinates, the magnitude or squared magnitude of which can be displayed as the

:
a
s



, target's image. This processing based on two-dimensional Fourier transforms is derived using a
.;: E! deterministic analysis that does not account for statistical properties of the reflectivity or any
5‘: noise that may be present.
|
:'o‘t; Wideband "chirp” pulses, having an instantaneous frequency that varies linearly with time,
: Et are also used for radar imaging. The common approach is to transmit a series of pulses, each of
fzfj. “\ which has an identical envelope and chirp rate. A variety of processing approaches are

described in the literature, including two-dimensional Fourier transformation by Mensa [4] and
Walker [5] and tomographic reconstruction by Mensa {4] and Munson, O'Brian, and Jenkins [6].

A variant of the stepped-frequency format in which each narrow pulse in a pulse group is a

=

chirp is described by Blahut [7]

{

v,":’ g Bernfeld [8] introduced the concept of using chirp-rate modulation with processing based

‘, - on tomographic reconstructions to image the target's scattering function for radar signals having

":"e 1 a large time-bandwidth product. With his approach, the target is illuminated by a sequence of

KN . linear-FM chirped pulses, with each pulse having a distinct chirp rate. Bernfeld notes that the

,,.2 ;:: output of a matched-filter receiver for a radar waveform with an infinite time-bandwidth

:'::; . product is a line integral through the scattering function, where the angular orientation of the
l line of integration for a pulse is a function of the chirp rate of that pulse. This observation

:: ) suggests using the same algorithms as used in x-ray tomography to determine the scattering

E: ::; function. Snvder, Whitehouse, Wohlschlaeger, and Lewis [9] extended Bernfeld’s approach to

.p) include waveforms with more modest time-bandwidth products. This is accomplished by noting

.::; ( similarities to the tomographic imaging of radioactive tracers, where ideal line-integrals are not

.:"c‘ ' available.

B & o |

ey The approach we describe in this paper can accommodate the stepped-frequency and chirp

N «_-: formats as well as others. It represents a continuation of our examination of how the

.“:‘-; > approaches currently used in emission tomography can be applied to radar imaging. The

;é ::-. method we have described in [9] is adapted from the best algorithm for time-of-flight emission
a

tomography when the processing of the data is required to be linear [10]. A more fundamental

-
.

approach described by Snyder and Politte [11] leads to nonlinear processing and improved

accuracy in forming images of radioactivity distributions. In this paper, we describe the initial
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results we have obtained in adopting an analogous approach for radar imaging. This relies on
the use of a mathematical model for data acquired in a spotlight-mode radar and on the use of

the method of maximum-likelihood estimation.

Van Trees [12] and Shapiro, Capron, and Harney [13] describe models for fluctuating,
diffuse radar-targets. The models are based on the assumption that the surface of the target is
rough compared to the wavelength of the radar illumination. The reflectance is modeled as a
Gaussian wide-sense stationary, uncorrelated scatter (WSSUS) process, which is uncorrelated in
range and temporally stationary. Such models are accurate for some targets in radio- and
optical-frequency radar-imaging systems; but not all. An important effect not included in our
present results is that of glint or specular components in radar returns. We are currently

attempting to extend our approach to include these additional effects.

Model based approaches that use statistical estimation-theory techniques appear less
frequently in the large litecature of radar imaging. One example is that of Frost, Stiles,
Shanmugan, and Holtzman [14], who use a multiplicative model and Wiener-filtering techniques.
Our approach differs in that the model we adopt for the return signal is more complicated than
a simple multiplicative one and depends explicitly on the transmitted waveform through a
spatial integration over the target. We also do not restrict the processing to be linear; in
particular, we show that the processing of the received data for producing the maximum-likeli-

hood estimate of the target’s scattering function is not linear.

Radar imaging systems generally produce estimates of one or the other of two quantities
that can be viewed as the target’s image. Some approaches produce an estimaie of the target’s
complex-valued reflectivity as a function of range and cross range, while others produce an
estimate of the target's scattering function. For the new approach we describe, the reflectivity
process is modeled as a complex-valued Gaussian random-process that is temporally stationary
and spatially white. The scattering function is the power-density spectrum of this process as a
function of delay. We treat both the reflectivity process and its second-order statistic, the
scattering function, as unknown quantities. The iterative approach we develop yields the
maximum-likelihood estimate of the scattering function and, simultaneously, the condition-

al-mean estimate of the reflectivity based on statistics which are consistent with the estimated
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:E: 3 scattering-function. Thus, both of the quantities treated separately in other imaging schemes

:E:: 2 are produced simultaneously with our new approach. This is unique to our approach, and we

feel that it is important.

L

_: ‘ We will develop a necessary condition, called the trace condition, which the maximum-like-
\§ ;:f lihood estimate of the target’s scattering function must satisfy. This equation appears to be very
‘_ " hard to solve directly. As a consequence, we reformulate the imaging problem using the

ey ! concept of incomplete-complete data spaces and then use the expectation-maximization

: : algorithm to derive an iterative algorithm for producing the maximum-likelihood estimate of the

S . scattering function. This procedure also yields the conditional-mean estimate of the reflectance.

C'. The technique we use to accomplish this parallels that described by Miller and Snyder in [15]

l" ;5 for power-spectrum estimation and extends their results to include indirect measurements of the
‘,‘: e process whose spectrum is desired; the process is now measured following a linear

‘ w transformation and in additive noise. As shown by Turmon and Miller [16], this approach to

.; E spectrum estimation results in estimated spectra with less bias and mean-square error than other
\ ',::. approaches discussed in the literature. We expect similar improvements will be seen in radar

::: - imaging of scintillating, diffuse targets when this new technique is used.
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2. Model

The model and notation we shall use closely follows that of Van Trees [12, Ch. 13). The
complex envelope of the transmitted signal will be denoted by 2Ey1/3s1(t) where Et is the
transmitted energy and sy() is normalized to unit energy. Thus, the transmitted signal is given

by

\/2E—rRe[sr(t)exp(j2nf°t)]. (N
where fg is the carrier frequency of the radar. For a stepped-frequency waveform consisting of
N pulse groups with N pulses in each group, the complex envelope is given by

N-1N-1

sy(t)= ‘Z’ Zo p(t—nTp-iT,)exp(j2nA,,(t-nT,-iT,)).
=5 as
where T, and T denote the time interval between pulses in a group and between groups,
respectively, A, is the increment to the carrier frequency fo of the n-th pulse in a group, and
p(t) is the complex envelope of a pulse. For pulses typically assumed, the envelope |p(7)| is a
narrow, rectangular function, and the phase arg[p(t)] is zero. For a sequence of N pulses having
chirp-rate modulation,

N~

selt)= ) p(t-iT,,)exp(jng‘(t—iT,)z),

{=0
where B; is the chirp rate of the i-th pulse, and iT, is its delay.

Patches on the target with a two-way delay in the interval [r,r+Ar) reflect a signal that is
incident on the patch at time ¢ with strength 5,r)Ar. Consequently, the complex envelope of
the received signal sgp(¢) following the illumination of the target by sy(t) is given by the

following superposition of returns from reflecting patches at all the two-way delays r:

0= 77 [ sle-elo(1- e Jar, @

Van Trees [12] and Shapiro, Capron, and Harney [13] discuss the reflectance process b(1.7)

for targets that are rough compared to the wavelength at the carrier of radio- and
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h optical-frequency radar-systems. For such diffuse targets, without any glint components in the

---
.
Gt'l.'

return signal, &(¢.r) may be taken to be a complex-valued Gaussian random-process with zero

) . mean and covariance

0 E[b(t,T)b*(t", T )]=K(t=t",7)6(Tr-T"), (5)
]

=;I:Q )

::: N where "*" denotes complex conjugation, the impulse function in delay results because of the

VIS

-¢¢ . . . . .

b assumption of uncorrelated scattering, and K(t.r) is the covariance function of the reflectance at

" each delay r. The Fourier transform of K(t.r) with respect to ¢ is the scattering function S(/.1)
of the target,

.)

s(f,r)=fK(z,r)exp(-;znmdz.

r‘.’ 8 (6)

) »

‘._J e

" This is the power-density spectrum of the reflectance process for all scattering patches at delay

W

2 3 .

& {'. - We will model the complex envelope of the total return signal r(¢) as

RN

;,' rit)=sg{t)+wlt), 7N
. where w(t) is complex-valued Gaussian white noise that is uncorrelated with the reflectance

process. The mean of w(¢) is zero, and the covariance is

¥y~ v
]

E(w(t)w*(t’)]=N,6(t-t"). (8)

LD
o,

23
e |

The scattering function S(f.r) of a diffuse, rotating radar target provides an image of the

target in doppler (or cross range) and delay (or range) coordinates. S(f.7)AfAr is the

x
{ .
o L mean-square strength (or power) of the reflectance of all patches on the target having a doppler
KA,
sl shift in the interval (f,f+Af) and a delay in the interval [r,r+Ar). We may, therefore, state the
KR
; X . . . .. . .
. 2 ) problem of imaging a diffuse radar-target as that of estimating the scattering function S(/.7) or,
b}
4 . . . .
A N equivalently, the covariance function K(t,r) given radar-return data {r(¢). T; < t < T¢} on an
LY
Vo . .
38 observation interval (T;,T).
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discrete model

%) In anticipation of using discrete-time processing of radar data to produce images, we now
i . . .

W state the discrete version of our model as follows. We are given N samples of the

K complex-valued radar-data corresponding to (7),

g

» rin]l=sglnl+w(n), n=0,1,....N-1, %)
R

b

X

where w(n) is a white Gaussian-sequence with zero mean and covariance

) E(w(n)w*(n)]= N6, . (10)
K
q and where the signal samples corresponding to (4) are given by

llp .-

K

:“: sR(n)=\/21:"TZs,(n.i)b(n,i). n=0,1,...,.N~ 1, an
W oo

In this expression, we define sy(n.i/) and b(n./) in terms of the transmitted signal and the

reflectance process, respectively, according to:

Ao
5
La s¢ln,i)=s,(nat-iaz),
2 (12)
b and
o
! }
o4 .
¥,
i b(n.i)-b(nAt——iAr.iAr)Ar.
y 2 (13)
']
B
[)
‘@ where At and Ar are the sampling intervals adopted in the discretization in time and delay,
~.. respectively. We assume that the target has a finite extent, so &(n.i) and, therefore also, terms
¥4
forming the sum in (11) are zero for i outside the / values m, m+l,..., m+[-1 starting from the
:1 minimum two-way delay corresponding to m. This discrete reflectance is a Gaussian sequence
™
h :‘, with zero mean and covariance given by
)
' E[b(n,ijb*(n",i")]=K(n-n",i)6,,.. (14)
.
-r:; The discrete scattering function S(/.i) is the Fourier transform of K(n.i),
..‘.
el
)
N
1%
"Wy -7-
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S{f.,i)= Kin,i -j2 .
(f.i) ..-Z-- (n,i)expl-j2nfn) s

The imaging problem for the discrete model is to estimate S(f.i), or equivalently the covariance
function K(n.i), for all frequencies f spanning the target in doppler, and for all delays /

spanning the target in delay, given the radar data {r(n), n=0, 1, ..., N-1I}.

matrix model
These discrete equations may conveniently be written in matrix form as follows. Define r

to be the received-signal vector of dimension N,

r(0)
r(1)

= ] = Sa + W, (16)
r(N-1)
where the N-dimensional vectors, sg and w, are given by

sx(0) w(0)
se(1) w(l)

Sp= and w=

: . (17)
sp(N-1) w(N-1)

Also, define S* as the NIxN rectangular matrix expressed in column-block form in terms of /

separate NxN matrices according to

se=| |, (18)
3/-!

where S; is an NxN diagonal matrix containing sample values of the complex envelope of the

transmitted signal sp(t),
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VAN IS Y ,v»n«' FRPIPNE AN




-

v e e e

-

e
-

-

)
i
¥
K,

s,(0.m+ ) 0 o - - 0

0 s (l.m+j) 0O - - 0
S,= 0 0 S 0 (19)
0 0 c o sAN=1.m+j)
Further, define the reflectance vector b of dimension N7 in the column-block form of I vectors {
according to
b(0) d
b(1)
b= . . (20)
b(l-1) '
where each &) is a vector of dimension N, j
b(0O,m+i)
b(l,m+i)
b(i) = : 1)

b(N=-1,m~+i)

Using (11) and these definitions, we can now express the N-dimensional signal vector sg of (15)

and (16) as

sx=y2E;S’b, (22)

where "+" denotes an Hermitian transpose. In terms of these defined matrices, the received

vector has zero mean and covariance

K,=E(rr’) = E(SRS;J+E(ww’)

=2EF,S E(bb")S+N,l.
(23)
Then, since
E(bli)b"{j))=Kl(i)6,,, (29) "
-9 -

TR T TR

; A e B T TR D o OO W TS Th J .
.\‘gl:as’q&l » &99‘4’-“4,«‘ LA A S 0'9 Q,S?oﬁ_gh'-g,i", KN .0.':0,.}.; “l,‘.!l, K .‘,'g W l!‘ RO O ‘Q).\"‘A’ A ?. ltv'b,a'l




&S G =

g X X8

&=

-s X

L)

N.

'3

where K(i) is the Hermitian-symmetric Toeplitz-matrix

K{O.m~+1i) K*(1l,m+i) - - K*(N-1,m+i)
K(i) = K(l..mﬂ') K(O..m*i) ' ’ (25)
K(IN-1,m+i) . co K(O,m+i)

it follows from (23) that the covariance K, of r is given by

K,=2E;S"KS+N,l, (26)

where K is the block-diagonal N/xN/ dimensional matrix defined by

K{0) 0 o - - o
S I | an
0 o o - - K(I-1)

The i-th diagonal block K(i) of K is the covariance matrix of the reflectance process at the i-th
delay bin. The imaging problem in terms of these expressions is, then, to estimate the matrix K
of (27) given the data vector r of (16). The scattering function then can be determined from X

by using (15).

- 10 -




3. Maximum-Likelihood Imaging for the Incomplete-Data Model

For reasons that will become evident in the next section, we term the N-dimensional data
vector r the incomplete data for the radar-imaging problem. The model given in the last section
for this incomplete data is that r is normally distributed with zero mean and covariance
specified in (26). Given the incomplete data, we wish to estimate the covariance K of the
reflectance process, as defined in (27). To do this, we adopt the maximum-likelihood method

of statistics, which selects K to maximize the incomplete-data loglikelihood

L,,,(K)-—%1n(det(2£,s’1<5+Nol))—%r'(zg,s'K5+ Nol)'r,

(28)
where the maximization is subject to the constraint that X be an admissible matrix, where by an
admissible matrix we mean a matrix having the block-diagonal form in (27) with each diagonal

block being a Hermitian-symmetric, positive-semidefinite Toeplitz- matrix.

We now derive a necessary condition, termed the trace condition, which the matrix
maximizer of the incomplete-data loglikelihood (28) must satisfy. In principle, this
equation specifies the maximum-likelihood estimate of K. If K maximizes L;4(K) of
(28), then L;4(K+6K) < L;ig(K) for 6K small. Equivalently, the first derivative is zero,
LyK+abK)-L,(K) (29)

lim, ., o =0,

for all matrix variations §K with a real such that K + asK is admissible. As shown in the

Appendix, this implies the trace condition,

Tr((2E,5 KS+ NI (rr =26,5 KS-NoI)(2E,5 KS+N,I) ' s°6KS)=0, (30)

which must be satisfied by the maximum-likelihood estimate K. Burg, Luenberger, and Wenger
[17) have studied an equivalent problem of Toeplitz-constrained covariance-estimation and have

derived the trace condition using a different approach.

There are NI unknowns in K. Since §K must be a block diagonal matrix of
Hermitian-symmetric Toeplitz-matrices, there are N/ parameters in 6K that can be varied.
These variations in the trace condition (30) generate N/ equations in the unknown elements of

K. Thus, in principle, the trace condition produces enough equations to determine the

- 11 -
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maximume-likelihood estimate K. However, the equations are complicated due to the inverse
matrices appearing in (30), so it does not appear to be feasible to determine K directly from the
trace condition, which motivates our development of the iterative approach in the next section.
The trace condition is only a necessary condition which the estimate K must satisfy. For it to
be sufficient as well, the second derivative must be negative along all admissible variational
directions §K. In the Appendix, an expression for the second derivative in the direction 6K is

obtained.

In the next section, we will develop an iterative procedure for determining a sequence of
estimates that increase the likelihood at each iteration stage. We will demonstrate that the limit

point of the iterations satisfies the trace condition (30).

- 12 -
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4. Maximum-Likelihood Imaging for the Incomplete/Cowplete Data Model

That the trace condition (30) cannot be solved directly for the maximum-likelihood
estimate of K motivates the indirect approach we now take of embedding the imaging problem
in a larger, seemingly more difficult problem. The result will be an iterative algorithm which
when implemented produces a sequence of admissible matrices K(0), K(1), ..., K(k), ... having the
property that the corresponding sequence of incomplete-data loglikelihoods Lig[K(9)], Liq[K(1)],

..., LigIK(®)], ... is nondecreasing at each stage.

Fuhrmann and Miller [18) have recently shown that maximum-likelihood estimates of
Toeplitz-constrained covariances which are positive definite do not always exist when given
only one data vector r. A necessary and sufficient condition for the likelihood function to be
unbounded, and therefore for no maximum-likelihood estimate to exist, is that there be a
singular Toeplitz matrix with the data in its range space. For our imaging problem, this

condition is that there exists an admissible K with

2E,S KS+N,lI

singular such that

r=(2E;5 KS+N,yl)a

for some complex-valued vector a. In fact, without constraining K further than being Toeplitz,
a sufficient condition that a singular estimate for X be obtained is that Ny = 0 and there exists a
singular K with r in the range space of 2ErS+KS. The argument for this mirrors that of
Fuhrmann and Miller in [18, Theorem 1], but is applied to the complete data loglikelihood (35).
Furhmann and Miller also showed that even if the true covariance had eigenvalues bounded
from above and below, the probability that there exists a singular Toeplitz matrix with the data
in its range can be very close to one. By restricting the search to Toeplitz matrices with
circulant extensions, they were able to show that the probability a singular circulant Toeplitz
matrix has the data in its range space is zero. Thus, in order for maximum-likelihood estimates
to be nonsingular with probability one for all nonnegative values of Ny, we restrict the class of
admissible Toeplitz matrices to be those with circulant extensions of period P, where P is equal
to or greater than the number N of data samples available, P > N. What we envision in

adopting this constraint is that for each delay i, the N sample values of the reflectance d(n.i}. n
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= (, 1, .., N-1, are from a stationary process that is periodic with period P, where P could be
some large but finite value. These N sample values enter the incomplete data r according to
(15) and (22). By using the expectation-maximization algorithm of Dempster, Laird, and Rubin
(19], we shall develop a sequence of admissible matrices that have the maximum-likelihood
estimate of K subject to this circulant extension as a limit point. The approach parallels that of
Miller and Sayder [15] for estimating the power spectrum of a time-series from a single set of
data. An important benefit of introducing the periodic extension and using the expecta-
tion-maximization algorithm is that estimates of both the scattering function and the reflectance
process are obtained simultaneously and can be readily viewed as target images in range and
cross-range coordinates; thus, the procedure proposed may be considered to be natural for the
imaging problem because both types of images considered separately in the past are obtained
directly. For completeness, we also include in the Appendix the equations obtained using the
expectation-maximization algorithm for estimating general Toeplitz matrices when the

assumption of a circulant extension is not made.

We shall introduce a modification of our notation to indicate that the N samples of the
reflectance process are from a stationary periodic-process of period P. Thus, let bn(i) denote
the N-dimensional vector &(i) of (21). We now think of bn(i) as an N-dimensional subvector of
the P-dimensional vector bp(i) formed from samples of the reflectance process over a full

period,

b(O,m+i)
b(l.m+1i) (31)

b,li)=
AU N - med)

blP-1,m+i)

If Iy is the NxN identity matrix, and if J is the PxN matrix defined by

J-(!”).
0 (32)
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then bn(i) = J+bp(i). Also, let by denote the N/-dimensional vector b of (20), and let bp be the
PI-dimensional vector with i-th block element bp(i). Then, by = M+bp, where M is the PIxN]

block diagonal-matrix

J 0 0 0
0O 0 O J

Furthermore, let Kn(i) denote the NxN Toeplitz covariance-matrix K(/) of bn(i) defined in
(25), and let Kp(i) denote the PxP circulant covariance-matrix of bp(i). Then, the Toeplitz
matrix Kn(/) is the upper left block of the circulant matrix Kp{i), as given by

Ky=J K,(ilJ.
Lastly, let Kp denote the P/xPI block-diagonal matrix in the form of (27) with the i-th diagonal
block being Kp(i). Then, if Ky denotes the NIxNI matrix K of (27), there holds

Ky=M K, M.

For use with the expectation-maximization algorithm, we identify the complete data s
(bp,w), where w is the N-dimensional noise vector defined in (16). We note from (15), (22),
and the above definitions that the incomplete data r can be obtained from the complete data

according to the mapping
r=J2E,S°Mb,+w. (34)
The loglikelihood function L 4(Kp) of the complete data is given by

1 (35)

1 .-
Ly(K,p)= 'iln(det(Kr))'ibrKrlbr'

where all terms that are not a function of Kp have been suppressed.

Let W denote the PxP discrete Fourier-transform matrix scaled so that the columns are

orthonormal,




2 s

7 =2 e

wd  ws T wd
! (36)
W=—=| wp w; w2 - w'f e .
P
w’ w:-l . , w[PP-ll(P-Il
where wp = exp(-j2x/P). Also, let Wp be the PIxPI block-diagonal matrix
¥V 0 0 - - O
wesl 0N 6"
O 0 0 - - W
Then, bp can be represented in rotated coordinates according to
c(0)
c(1) | (38)
Cp=W,b,= . .
c(/-1)

where c(i) = Wbp(i). The assumption that bp(i) originates from a periodic process implies that
the P/-dimensional vector cp is normally distributed with zero mean and diagonalized

covariance

I,=E(cpc;)=W, K, W;. (39)

We will denote the (p+il)-t4 diagonal element of Lp by op2(i); this is the p-th diagonal element
of the PxP diagonal matrix E[c(i)c*(i)].

Substituting the expression

K,=~WiZ,W, (40)

into (35) indicates that the complete-data loglikelihood can alternatively be expressed as a

function of Ip according to

L o
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where cp(i) is the p-th element of the P-dimensional vector cp(i).

The expectation-maximization algorithm for estimating the covariance of the reflectance
process Kp from the incomplete data r is an alternating maximization procedure in which a
sequence of estimates of Tp having increasing likelihood is obtained first. If Ip(k) denotes the
estimate of Tp at stage k, then there is a corresponding element, Kp(k) = Wp+Zp()Wp in a
sequence of estimates of Kp having increasing likelihood. Likewise, to the k-th element Kp(k) of
the sequence of estimates of Kp, there is a corresponding element, Kn(k) = M+Kp(K)M, in a

sequence of estimates of Ky having increasing likelihood.

Each iteration stage of the expectation-maximization algorithm has an expectation (E) step
and a maximization (M) step that must be performed to get to the next step. The E-step
requires evaluation of the conditional expectation of the complete-data loglikelihood (41) given

the incomplete data r and assuming that the covariance defining the complete data is Ep(k),

QL N EW=E[ L (Z,)Ir,2%]. (42)

From (41), we have that

() = 1 e 2 (kg . -2(; 43)
QLE,IEH) -5 Z (o,00)-32, ; Z Bl c,(0)]*Ir, £¢103%(0).
{=0 p=0 = =0
The M-step yields the estimate p(k+1) at stage k+I as the choice of Ip that maximizes this
conditional expectation,
r*Vaarg max [Q(L,|Z¥], (44)

subject to the constraint that the maximizer be a diagonal covariance-matrix. From (43), this

maximization yields the diagonal matrix Zp(k+1) with (p+il)-th diagonal element

(a2()* = ELIc,(0)12]r, £W]. (45)
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Thus, we may write Ip(k+1) as

d 46
LV eElc,crlr 2], )

where the "d" over the equal sign means that the diagonal terms in the matrix on the left side
equal the diagonal terms in the matrix on the right side and that all the off diagonal elements

on the left side are zero.

The above expression (46) appears to be complicated because of the several matrices we
have defined, but it produces a sequence of covariance estimates having a straightforward

interpretation. If we form the matrix Kp(k+1) according to

K(:’ll- W;z(’t’llw" (47)
then we find that
k'*"0) 0 o - - 0
K o 0 k*'1) o - - 0 (48)
P [
0 ) o - - K¥Yr-1)

where Kplk+1)(i) is a PxP circulant matrix interpreted as the estimate at stage k+/ of the
covariance Kp(i) of the P-periodic reflectance process at delay m+i. Miller and Snyder [15]
show that the (n,m)-element of this circulant matrix is given by

r-1 (49)
l Z E[b(p,i)b*((p*-n—m)pl’)l"oKl:)].

P&
where <a>p = a mod P. Equation (49) has an intuitively appealing form. If the reflectivity
process &n.i) could be observed for all instants n = 0, 1, ..., P-1 in a period and for each i
independently, then the maximum-likelihood estimate of the covariance Kp(i/) would be the

arithmetic average of the lagged products

(50)

ol

’Z;b(p.i)b*((p+n-m),.i).

-18 -




Equations (48) and (49) indicate that one should simply substitute the conditional mean estimate
of an unknown lagged product into this expression to form the maximum-likelihood estimate of

the covariance when only the incomplete data are known.

estimating Lp and Kp

The maximum-likelihood estimate of Ip is a limit point of the sequence defined in (46).
The terms on the right side of this equation can be evaluated as follows. Let the
conditional-mean estimate of cp in terms of the incomplete data r be defined at stage k by

e =Efc,lr, V). G

Then, (46) can be rewritten in the form

d - R
V=, =) (c,-e¥") Ir o1+l

(52)
Now estimating cp from r, where from (34) and (38)
r=J2E;S M Wic,+w, (33)

is a standard problem in linear estimation-theory. From Tretter [20, Ch. 14}, for example, we
find that

& = J2E, L PW MS[2E,S M W;E®W MS+ NI 'r.
(54)

Furthermore, the first term on the right side in (52) is the covariance of the estimation error

when cp is estimated from r. Also from Tretter [20, Ch. 14], we have

El(c,- &¥)(c,-&¥)"|r, 2%
-| - > R d ' (SS)
=W -2F TWW MS[2E,S" M W,EW W, MS+ N I1 S M W, ¥,

In summary, the following steps are performed to produce a sequence Ip(0), Ep(1),
..., p(K), ... of estimates of Ep for which the corresponding sequence of likelihoods is

nondecreasing:

-19 -
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1. set k = 0, select a starting estimate Tp(0);

2. calculate the estimate of cp according to (54);

3. calculate the error covariance according to (55);

4. update the estimate of Ip according to (52);

5. if "last iteration” then stop, else replace k by k+! and go to 2.

The starting value in step 1 can be any positive-definite, diagonal covariance-matrix of
dimension PIxPI. Clearly, the processing indicated in (52)-(55) is a nonlinear function of
the data.

From (40), a sequence of estimates of Kp having increasing likelihood is obtained from the

sequence of estimates of Ip according to the following formula:

K¥aw;zPw,. (56)

estimating the scattering function
Recall that Kp is a block-diagonal matrix with the i-th diagonal block equal to the
circulant covariance matrix Kp(i) of the P-periodic reflectance process at delay m+i. The first

column of this matrix is given by Kp(i)e, where e is the P-dimensional unit vector

O =

(57
0

Denote the scattering function of the P-periodic reflectance process at delay m+i by S(i). This

is a P-dimensional vector with p-th element given from (14) by

s(%'i) = ’Zle(n.i)exp(_ﬂnPnp)

=JPWK,li)e. (58)




From this expression, we see that the vector

e (59)
JPW,.K,

is a vector of I vectors of dimension P, the i-th of which is the scattering function at delay bin
m+i. Consequently from (56), a sequence of estimates of the scattering function having

increasing likelihood is obtained from the sequence of estimates of Tp according to the formula:

e (60)
‘[FX(:]VP )

Now, the vector

JPW,

appearing in (60) is an /P-dimensional vector of all ones. As a result, the quantity in (60) is a
vector whose elements are the diagonal elements of Ip(k). Thus, at iteration stage k, the
estimate of the scattering function at delay m+i is given by the P diagonal elements of the i-tA
PxP diagonal block of Ip(k). We may, therefore, simply regard Zp(k) as the stage k estimate of
the scattering function. If the (p+il)-th diagonal element of Tp(k) is the placed in the (p.i)
element of a Px/-dimensional array, as p varies from 0 to P-I and i varies from 0 to /-1, then
the result may be displayed as the target’s scattering-function image at stage k in range (i

coordinate) and cross range (p coordinate).

-21-




estimating the reflectance process

It is interesting to note that the k-th stage conditional-mean estimate of cp, given the
measurements r and assuming that the second-order statistics of reflectance are given by the
k-th stage estimate of the scattering function, is used to form the estimate of Ip at stage k+/
when the expectation-maximization algorithm is used. This estimate is of very much interest in
its own right because, from (38), cp(i) is the Fourier transform of the reflectance process bp(i).
Thus, if the (p+il)-th element of this estimate is placed in the (p.i) element of a Px/
dimensional array, as p varies from 0 to P-I and i varies from 0 to /-1, then the result may be
displayed as the target's reflectance image at stage k in range (i coordinate) and cross range (p

~»ordinate).

convergence issues
There are some important properties of the iteration sequence (46) which are worth

mentioning. First, each step is in an improving direction. This is shown by writing (52) out as

sl 2 pln, plegit gl ©h
where
6 = 2E W, MSK* (rr" = 2E .S M Wi ZPW,MS-NI)K*'S"M W, (62)
and where
KM a2FE S"M°W.E¥W,MS+N,I (63)
is the k-th estimate of the covariance K, of r. Next, the trace condition (30) which the
maximum-likelihood estimate must satisfy is reexamined. From the assumption of the
P-periodicity of the reflectance process and the matrix definitions given, the admissible
variations 6K must be of the form
6K=M'W,6ZW,M. (64)
Here, 6T is a diagonal matrix of the same dimensions as £. The trace condition (30) then
becomes
Tr(K;'(2E; S M WHE,W,MS+NoI-rr’)K;'S"M W6 W ,MS)=0. (65)




(2€,) "' Tr(6™sL). (66)
' According to (61), Lp(k) is changed at each stage by adding the diagonal elements of
, ):‘,‘"e“';:‘;" 67)
to Ip(k). Define

4 (68)
3T =Mt o,

as these diagonal elements. Then, evaluating the trace at this variation gives

Tr(e™3x™)20. . (69)
This shows that the variation
i 5T

Using the fact that Tr(4B) = Tr(BA) and evaluating this trace at the k-tk iterate, we see that the

trace on the left side of (65) is equal to .

is in an improving direction. Furthermore, we are guaranteed that the incomplete-data

loglikelihood is nondecreasing as a result of the M-step of the expectation-maximization

algorithm. At this step, the conditional expectation of the complete-data loglikelihood given the

incomplete data and the last iterate for Lp is maximized over Lp. As shown in [15] and [19],

> A e e

this implies that the incomplete-data loglikelihood is nondecreasing.

In the Appendix, we show that if Ng > 0 and the initial guess for Ip is positive definite,

then each succeeding guess is also positive definite. This gives another interpretation of (69)

only if the diagonal elements of ©(k) are zero. It follows from this expression (69) that a second
» property of the sequence (46) is that all stable points of the sequence satisfy the necessary trace

condition (30). This is easily shown by noticing that if Tp(k+1) = Tp(k), then the diagonal

elements (68) are zero. But, this implies that the diagonal elements of ©(k) are zero and hence

2 that

'

when Np > 0. Since the diagonal elements of Tp(k) are positive, (69) holds with equality if and %
Tr(6™6£)=0 (70) l
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for all diagonal §Z.

computational considerations

The computations required to produce radar in;ages with our method are specified by (52),
(54), (55), and (60) for the scattering-function image and by (52), (54), and (55) for the
reflectance image. The number of iterations of these equations that are required to produce an
image near the convergence point is presently unknown. Our experience in using an iterative
algorithm to produce maximum-likelihood images for emission tomography suggests that 50 to
100 iterations may be necessary, but this is only a guess that will not be verified until some
experiments are completed. Some form of specialized processor to accomplish each iteration
stage efficiently will probably be needed to produce images in practically useful times. One

possible approach is the following. The matrix product

r=26,w,MS

is required at each iteration stage and does not change. This P/xN-dimensional matrix can,
therefore, be computed once off line, stored, and then used as needed during on-line

computations. Then, at iteration stage k, the following on-line computations can be performed:

1. compute the NxN matrix 4 defined by A = I'Zp(k)' + Nol;

&%

2. compute the PIxN matrix B defined by B = Tp(k)T;
3. compute BA-1r and the diagonal elements of Tp(k) -~ BA-1B+,

The computations in 3 can be accomplished in about 4N+PI-2 time steps using the systolic array

5L

described by Comon and Robert [2]1] augmented, as they suggest, by one row to accomplish the

postmultiplication of BA-1by r and by IP rows to accomplish the postmultiplication by B+. The

G

t matrix multiplications in 1 and 2 for determining A and B can also be performed rapidly on a
systolic array. More study of implementation approaches is needed, but it does not appear that
the computational complexity of our new imaging algorithm needs to be a limitation to its

practical use.
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The choice of N and [ is important for the computations. These parameters are selected to
achieve a desired range and cross-range resolution and are, therefore, problem dependent, but
the same considerations used with other approaches to radar imaging can be used in selecting
them. On the other hand, the choice of P is unique to our approach. As stated, we need P >
N, but no upper limit is given. In [18], it is shown that as P increases towards infinity so does
the maximum value of the incomplete-data loglikelihood function, with probability one. Thus,
P cannot be made arbitrarily large from a theoretical standpoint. Practically, it is desired to
have P as small as possible to decrease the memory requirements and the numerical operations.
The natural question, then, is what would it mean to have P equal to its smallest allowed value
N? For this choice, W is an NxN matrix and the matrices K(i) are Hermitian symmetric,
circulant covariance matrices. Clearly, for a process which is not circulant, this produces an
undesirable estimate for K. As P increases, the block diagonal matrices in Ky look less like
circulant matrices. Hence, there is a tradeoff involved in the choice of P between the practical
constraints of storage and computations and desirable estimates for K. So far as we have been

able to determine, there is no theoretical basis for selecting P.
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8. Conclusions

The expressions we have obtained for forming images of diffuse, fluctuating radar targets
are based on the model stated in Section 2. The target reflectance is assumed to introduce
wide-sense-stationary uncorrelated-scattering (WSSUS) of the transmitted signal with no glint or
specular components being present. The reflectance process is assumed to be a WSSUS Gaussian
process with unknown second-order statistics given by a delay-dependent covariance or
scattering function. Echos of the transmitted signal are received from all the reflecting patches
that make up the target. Each patch introduces some propagation delay, doppler shift, and
random amplitude-scaling into the signal it reflects. The superposition of the echos from all the
patches is received in additive noise. Thus, the reflectance process is only observed indirectly
following a linear superposition and in additive noise, so neither the reflectance process nor its

second-~order statistics are known. Target images are made by displaying estimates of either the

-reflectance process or its second-order sta*istics (scattering function) based on processing the

received signal. In Section 3, we derived the trace condition which the maximum-likelihood
estimate of the covariance of the reflectance must satisfy, and we concluded that this condition
is too complicated to solve explicitly for the estimate. This motivated the introduction in
Section 4 of the incomplete-complete data model and the use of the expectation-maximization
algorithm, which results in a sequence of estimates of the scattering function having increasing

likelihood. A corresponding sequence of estimates of the reflectance process is also obtained.

There are a number of issues yet to be resolved for the approach we have presented, and
we are addressing these. Glint and specular components in the return echos need to be
accommodated. The selection of transmitted signals to produce good images is an important
subject about which little study has been made. The quality of target images obtained with our
new approach is not known at present; to study this issue, we are presently implementing a
computer simulation so that comparisons to alternative processing strategies can be made. The
equations we have developed are computationally demanding, so special processing architectures

will be important to make their use practical.
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7. Appendix

derivation of the trace condition (30)
From the definition of the loglikelihood function in (28), we have

é(Lu(K*abK)— L (K))
(A1)

- --l—r'((K,+ a2E,S°6KS) " - K;‘)r- %ln(det(l(,"- a2E,S'6KS)dat(K;')).

2a
where K. is the covariance of the incomplete data r as given in (26). Examining the first term

on the right, we have that it equals

1 r‘K;'(( 1+a2£,s‘61<51<;‘)"—1)r (
A2)

2a
-El;r'K;'(aZETS°6KSK;')(I+a2I:'T3’6KSK;')_'r
-%r'K:'2ETS’6KSK:'r+O(a).
Examining the second term on the right in (A1), we have

-—L—ln(det(l +a2F; 5 6KSK;')) = —i%ln(det(l +aB))

-—21-—a-1n(1 +aTr(B)+...+a"det(B))

(A3)
--L1e(B)+0(a),
2
where B is defined in the first equality. Equations (A2) and (A3) imply that
rK;'2E.S"6KSK;'r-Tr(2E ;S 6KSK;')=0,
(A4)

which is the trace condition (30).

derivation of the sign-definiteness condition
To check the sign-definiteness of the second derivative of the loglikelihood Lig(K), we

form the limit
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limmli—l Tr((2E:S°(K+abK)S+N,I) ' (rr"=NoI-2E.5°(K+abK)S)

X(2E,S° KS+a2E .S 6KS+N,I)'S°6KS
-K;'(rr"~NoI-2E ;S KS)K;'S"6KS)

=Tr(K;'2E,S 6KSK,' (2E;S KS+N oI -2rr")K;'2E ;5 6KS). (AS)
A necessary condition for K to be a relative maximum is that this last expression evaluated at K
be equal to or less than zero for all admissible variations §K. Under the assumptions in Section
4, admissible variations are given by (64). Substituting (64) into (AS5) and evaluating for all’
diagonal matrices §T gives the second-order necessary condition. A sufficient condition for K
to be a strict local maximum is that the trace condition (30) is satisfied and that (AS5) is strictly

negative for all admissible variations.

estimating a general Toeplitz matrix

In Section 4, we derived a sequence of estimates for a covariance matrix subject to the
constraint that the estimates must be circulant Toeplitz matrices. For completeness, we develop
and discuss in this section the equations for estimating a covariance matrix subject to the
weaker constraint that the estimates be general Toeplitz matrices. Similar equations for other
constraints on the Toeplitz matrices are easily obtained by mimicking the steps in the main body
of this paper.

Let the complete data be {b,w}), and let b be normally distributed with zero mean and
covariance K, as given in (27). The complete-data loglikelihood is given in (35). Maximizing

this function gives the trace condition

Tr(K'(bb - K)K™'6K)=0, (A6)

which the maximum-likelihood estimate K must satisfy. Performing the E and M steps of the
expectation-maximization algorithm yields the following iteration sequence for the elements
K(ni), n=0, 1, ... N-1, of the covariance matrix K(i) defined in (25):

N-n-1 (A7)
nE[ Z b(j,m+i)b*(j+n,m+i)lr,K'*].

1=0

(et 1) L
K (n,i) N




In matrix form,

K'EY u g¥ 2E,K‘”SK',"'"(rr'-2E,S’K"’S-NOI)K‘,”"S’K"'. (A8)

where

KM =2E S K™Ms+N,I. (A9)

If this iteration converges to a stable point, then the trace condition is satisfied at that point, as
may be shown by using the same arguments as in Section 4. It is worth restating that the reason
this iteration is not recommended here is that the probability that the iteration sequence
generates a singular estimate for K approaches one as N gets large. By restricting consideration
to Toeplitz matrices with circulant extensions, the loglikelihood function is bounded with

probability one for finite extensions and a positive definite K is generated with probability one,

as proven by Fuhrmann and Miller [18].

proof that Tp(k) is positive definite for every k
Assume that the initial guess Zp(0) for Zp is positive definite and that Ng > 0. We will now
show that if Ip(k) is positive definite, then so is Ip(k+1), and thus, by induction, Ep(k) is
positive definite for all k. One key to following this derivation is the matrix identity
B(I+AB) '=(1+BA)'B. (A10)

This identity is used to rewrite (62) as

sl :H(NOZE,E‘;"VPM.S‘S’M'V;Z':'+N;‘;E‘,’"
+2E,. LW MSrr S M W, E¥YH"®
=N 2E(HLPW,MS)(S M WiLPH") (A1)
+2E (HEYW MSr)(r'S M w,2%'H")
+NIHEW ",

where we have defined H according to

H=(2E,L¥W MSS M Wi+ NoI) ™" (A12)
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Clearly, all the diagonal elements of (All) are greater than or equal to zero. To show that they

are strictly positive, we look at the last term and get that the i-zh diagonal element is

rP-1
(NEHERH"), = NG 3 (H),(£7),,(H7),
e-

Al3
. (A13)
l.

1
I(H)lllz(z(:')”’
[}

which is clearly positive when Ng > 0 since H is invertible and all diagonal elements of Ip(k)

are positive,







